Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Revision NotesPast Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic QuestionsRevision Notes
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast PapersRevision Notes
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Topic QuestionsRevision Notes

CIE A Level Maths: Pure 3

Revision Notes

Home / A Level / Maths: Pure 3 / CIE / Revision Notes / 8. Complex Numbers / 8.1 Complex Numbers / 8.1.4 Complex Roots of Polynomials


8.1.4 Complex Roots of Polynomials


Complex Roots of Quadratics

What are complex roots? 

  • Complex numbers provide solutions for quadratic equations which have no real roots

8-1-4-complex-roots-of-polynomials-diagram-1

  • Complex roots occur when solving a quadratic with a negative discriminant
    • This leads to square rooting a negative number

  

How do we solve a quadratic equation with complex roots?

  • We solve an equation with complex roots in the same way we solve any other quadratic equations
    • If in the form a z squared plus b equals 0 blank open parentheses a not equal to 0 close parentheses we can rearrange to solve
    • If in the form a z squared plus b z plus c equals 0 blank left parenthesis a not equal to 0 right parenthesis we can complete the square or use the quadratic formula
  • We use the property straight i equals square root of negative 1 end root along with a manipulation of surds
    • square root of negative a end root equals square root of a cross times negative 1 end root equals square root of a cross times square root of negative 1 end root
  • When the coefficients of the quadratic equation are real, complex roots occur in complex conjugate pairs
    • If z equals m plus n straight i space left parenthesis straight n space not equal to space 0 right parenthesis is a root of a quadratic with real coefficients then z to the power of asterisk times equals m minus n straight i is also a root
  • When the coefficients of the quadratic equation are non-real, the solutions will not be complex conjugates
    • To solve these use the quadratic formula

 

How do we find a quadratic equation given a complex root?

  • We can find the equation of the form bold italic z squared plus bold italic b bold italic z plus bold italic c equals 0 if you are given a complex root in the form bold italic m plus bold italic n bold i
    • We know that the complex conjugate bold italic m bold minus bold italic n bold i is another root, 
    • This means that z minus open parentheses m plus n straight i close parentheses and z minus open parentheses m minus n straight i close parenthesesare factors of the quadratic equation
    • Therefore z squared plus b z plus c equals left square bracket z minus open parentheses m plus n straight i close parentheses right square bracket left square bracket z minus open parentheses m minus n straight i close parentheses right square bracket
      • Writing this as left parenthesis open parentheses z minus m close parentheses minus n straight i right parenthesis left parenthesis open parentheses z minus m close parentheses plus n straight i right parenthesis will speed up expanding
    • Expanding and simplifying gives us a quadratic equation where b and c are real numbers

Worked Example

8-1-4-complex-roots-of-polynomials-example-solution-1-part-1

8-1-4-complex-roots-of-polynomials-example-solution-1-part-2

Exam Tip

  • Once you have your final answers you can check your roots are correct by substituting your solutions back into the original equation.
  • You should get 0 if correct! [Note: 0 is equivalent to 0 plus 0 bold i]

Complex Roots of Cubics & Quartics

How many roots should a polynomial have?

  • We know from previous sections that every quadratic equation has two roots (not necessarily distinct)
  • This is a particular case of a more general rule:
    • Every polynomial equation, with real coefficients, of degree n has n roots
    • The n roots are not necessarily all distinct and therefore we need to count any repeated roots that may occur individually
  • From the above rule we can state the following:
    • A cubic equation of the form a x cubed plus b x squared plus c x plus d equals 0 can have either:
      • 3 real roots
      • Or 1 real root and a complex conjugate pair
    • A quartic equation of the form a x to the power of 4 plus b x cubed plus c x squared plus d x plus e equals 0 will have the following cases for roots:
      • 4 real roots
      • 2 real and 2 non-real roots(a complex conjugate pair)
      • 4 non-real roots (two complex conjugate pairs)

How do we solve a cubic equation with complex roots?

  • Steps to solve a cubic equation with complex roots
    • If we are told that m plus n straight i is a root, then we know m minus n straight i is also a root
    • This means that left parenthesis z minus open parentheses m plus n straight i close parentheses right parenthesis and left parenthesis z minus left parenthesis m minus n i right parenthesis right parenthesis are factors of the cubic equation
    • Multiply the above factors together gives us a quadratic factor of the form left parenthesis A z squared plus B z plus C right parenthesis
    • We need to find the third factor left parenthesis z minus alpha right parenthesis
    • Multiply the factors and equate to our original equation to get

open parentheses A z squared plus B z plus C close parentheses open parentheses z minus alpha close parentheses equals a x cubed plus b x squared plus c x plus d

  • From there either
    • Expand and compare coefficients to find alpha
    • Or use polynomial division to find the factor open parentheses z minus alpha close parentheses
  • Finally, write your three roots clearly

How do we solve a quartic equation with complex roots?

  • When asked to find the roots of a quartic equation when we are given one, we use almost the same method as we did for a cubic equation
    • State the initial root and its conjugate and write their factors as a quadratic factor (as above) we will have two unknown roots to find, write these as factors left parenthesis z space minus space alpha right parenthesis and left parenthesis z space minus space beta right parenthesis
    • The unknown factors also form a quadratic factor left parenthesis z space minus space alpha right parenthesis left parenthesis z space minus space beta right parenthesis
    • Then continue with the steps from above, either comparing coefficients or using polynomial division
      • If using polynomial division, then solve the quadratic factor you get to find the roots alpha and beta

How do we solve cubic/quartic equations with unknown coefficients?

  • Steps to find unknown variables in a given equation when given a root:
    • Substitute the given root into the equation space straight f left parenthesis z right parenthesis space equals space 0
    • Expand and group together the real and imaginary parts (these expressions will contain our unknown values)
    • Solve as simultaneous equations to find the unknowns
    • Substitute the values into the original equation
    • From here continue using the previously described methods for finding other roots for either cubic/quartic equations

Worked Example

8-1-4-complex-roots-of-polynomials-example-solution-2-part-a-part-1

8-1-4-complex-roots-of-polynomials-example-solution-2-part-a-part-2

Exam Tip

  • As with solving quadratic equations, we can substitute our solutions back into the original equation to check we get 0.


  • 1. Algebra & Functions
    • 1.1 Modulus Functions
      • 1.1.1 Modulus Functions - Sketching Graphs
        • 1.1.2 Modulus Functions - Solving Equations
        • 1.2 Polynomials
          • 1.2.1 Polynomial Division
            • 1.2.2 Factor & Remainder Theorem
              • 1.2.3 Factorisation
                • 1.2.4 Rational Expressions
                  • 1.2.5 Top Heavy Rational Expressions
                  • 1.3 Partial Fractions
                    • 1.3.1 Linear Denominators
                      • 1.3.2 Squared Linear Denominators
                        • 1.3.3 Quadratic Denominators
                        • 1.4 Further Modelling with Functions
                          • 1.4.1 Further Modelling with Functions
                          • 1.5 General Binomial Expansion
                            • 1.5.1 General Binomial Expansion
                              • 1.5.2 General Binomial Expansion - Subtleties
                                • 1.5.3 General Binomial Expansion - Multiple
                                  • 1.5.4 Approximating values
                                • 2. Logs & Exponentials
                                  • 2.1 Logarithmic & Exponential Function
                                    • 2.1.1 Exponential Functions
                                      • 2.1.2 Logarithmic Functions
                                        • 2.1.3 "e"
                                          • 2.1.4 Derivatives of Exponential Functions
                                          • 2.2 Laws of Logarithms
                                            • 2.2.1 Laws of Logarithms
                                              • 2.2.2 Exponential Equations
                                              • 2.3 Modelling with Logs & Exponentials
                                                • 2.3.1 Exponential Growth & Decay
                                                  • 2.3.2 Using Exps & Logs in Modelling
                                                    • 2.3.3 Using Log Graphs in Modelling
                                                  • 3. Trigonometry
                                                    • 3.1 Reciprocal Trigonometric Functions
                                                      • 3.1.1 Reciprocal Trig Functions - Definitions
                                                        • 3.1.2 Reciprocal Trig Functions - Graphs
                                                          • 3.1.3 Trigonometry - Further Identities
                                                          • 3.2 Compound & Double Angle Formulae
                                                            • 3.2.1 Compound Angle Formulae
                                                              • 3.2.2 Double Angle Formulae
                                                                • 3.2.3 R addition formulae Rcos Rsin etc
                                                                • 3.3 Further Trigonometric Equations
                                                                  • 3.3.1 Strategy for Further Trigonometric Equations
                                                                  • 3.4 Trigonometric Proof
                                                                    • 3.4.1 Trigonometric Proof
                                                                  • 4. Differentiation
                                                                    • 4.1 Further Differentiation
                                                                      • 4.1.1 Differentiating Other Functions (Trig, ln & e etc)
                                                                        • 4.1.2 Product Rule
                                                                          • 4.1.3 Quotient Rule
                                                                          • 4.2 Implicit Differentiation
                                                                            • 4.2.1 Implicit Differentiation
                                                                            • 4.3 Differentiation of Parametric Equations
                                                                              • 4.3.1 Parametric Equations - Basics
                                                                                • 4.3.2 Parametric Equations - Eliminating the Parameter
                                                                                  • 4.3.3 Parametric Equations - Sketching Graphs
                                                                                    • 4.3.4 Parametric Differentiation
                                                                                  • 5. Integration
                                                                                    • 5.1 Further Integration
                                                                                      • 5.1.1 Integrating Other Functions (Trig, ln & e etc)
                                                                                        • 5.1.2 Integrating with Trigonometric Identities
                                                                                          • 5.1.3 f'(x)/f(x)
                                                                                            • 5.1.4 Substitution (Reverse Chain Rule)
                                                                                              • 5.1.5 Harder Substitution
                                                                                                • 5.1.6 Integration by Parts
                                                                                                  • 5.1.7 Integration using Partial Fractions
                                                                                                    • 5.1.8 Integration Decision Making
                                                                                                    • 5.2 Differential Equations
                                                                                                      • 5.2.1 General Solutions
                                                                                                        • 5.2.2 Particular Solutions
                                                                                                          • 5.2.3 Separation of Variables
                                                                                                            • 5.2.4 Modelling with Differential Equations
                                                                                                              • 5.2.5 Solving & Interpreting Differential Equations
                                                                                                            • 6. Numerical Methods
                                                                                                              • 6.1 Numerical Solutions of Equations
                                                                                                                • 6.1.1 Change of Sign
                                                                                                                  • 6.1.2 Change of Sign Failure
                                                                                                                    • 6.1.3 x = g(x) Iteration
                                                                                                                  • 7. Vectors
                                                                                                                    • 7.1 Vectors in 2 Dimensions
                                                                                                                      • 7.1.1 Basic Vectors
                                                                                                                        • 7.1.2 Magnitude & Direction
                                                                                                                          • 7.1.3 Vector Addition
                                                                                                                            • 7.1.4 Position Vectors
                                                                                                                              • 7.1.5 Problem Solving using Vectors
                                                                                                                              • 7.2 Vectors in 3 Dimensions
                                                                                                                                • 7.2.1 Vectors in 3 Dimensions
                                                                                                                                  • 7.2.2 Problem Solving using 3D Vectors
                                                                                                                                  • 7.3 Further Vectors
                                                                                                                                    • 7.3.1 Equation of a Line in Vector Form
                                                                                                                                      • 7.3.2 Parallel, Intersecting & Skew Lines
                                                                                                                                        • 7.3.3 The Scalar ('Dot') Product
                                                                                                                                          • 7.3.4 Uses of the Scalar Product
                                                                                                                                        • 8. Complex Numbers
                                                                                                                                          • 8.1 Complex Numbers
                                                                                                                                            • 8.1.1 Intro to Complex Numbers
                                                                                                                                              • 8.1.2 Complex Conjugation & Division
                                                                                                                                                • 8.1.3 Square Roots of a Complex Number
                                                                                                                                                  • 8.1.4 Complex Roots of Polynomials
                                                                                                                                                  • 8.2 Argand Diagrams
                                                                                                                                                    • 8.2.1 Argand Diagrams - Basics
                                                                                                                                                      • 8.2.2 Geometry of Complex Addition, Subtraction & Conjugation
                                                                                                                                                        • 8.2.3 Modulus & Argument
                                                                                                                                                          • 8.2.4 Loci in Argand Diagrams
                                                                                                                                                            • 8.2.5 Inequalities & Regions in Argand Diagrams
                                                                                                                                                            • 8.3 Further Complex Numbers
                                                                                                                                                              • 8.3.1 Exponential Form of Complex Numbers
                                                                                                                                                                • 8.3.2 Geometry of Complex Multiplication & Division
                                                                                                                                                                  • 8.3.3 Square Roots of a Complex Number - Advanced


                                                                                                                                                                  DOWNLOAD PDF

                                                                                                                                                                Author: Amber

                                                                                                                                                                Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.


                                                                                                                                                                Save My Exams Logo
                                                                                                                                                                Resources
                                                                                                                                                                Home Join Support

                                                                                                                                                                Members
                                                                                                                                                                Members Home Account Login

                                                                                                                                                                Company
                                                                                                                                                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                Quick Links
                                                                                                                                                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                 
                                                                                                                                                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                                                                                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.