Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsGeographyHistoryPsychologySociology
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychology
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Other Subjects
CIE English LiteratureBusinessComputer ScienceEconomicsGeographyHistorySociology
Edexcel English LiteratureBusinessComputer ScienceGeographyHistory
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographyPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel IAL English LiteratureGeographyPsychology
CIE IAL History
BiologyChemistryPhysics
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Up to 33% off discounts extended!

Ace your exams with up to 33% off our Annual and Quarterly plans for a limited time only. T&Cs apply.


Ok, hide this.

CIE A Level Maths: Pure 3

Revision Notes

Home / A Level / Maths: Pure 3 / CIE / Revision Notes / 8. Complex Numbers / 8.2 Argand Diagrams / 8.2.3 Modulus & Argument


8.2.3 Modulus & Argument


Modulus & Argument

How do I find the modulus of a complex number?

  • The modulus of a complex number is its distance from the origin when plotted on an Argand diagram
  • The modulus of z is written open vertical bar z close vertical bar
  • If z equals x plus straight i y, then we can use Pythagoras to show…
    • open vertical bar z close vertical bar equals square root of x squared plus y squared end root
  • A modulus is always positive
  • the modulus is related to the complex conjugate by…
    • z z to the power of asterisk times equals z to the power of asterisk times z equals open vertical bar z close vertical bar squared
    • This is because z z to the power of asterisk times equals open parentheses x plus straight i y close parentheses open parentheses x minus straight i y close parentheses equals x squared plus y squared
  • In general, open vertical bar z subscript 1 plus z subscript 2 close vertical bar not equal to open vertical bar z subscript 1 close vertical bar plus vertical line z subscript 2 vertical line
    • e.g. both z subscript 1 equals 3 plus 4 straight i and z subscript 2 equals negative 3 plus 4 straight i have a modulus of 5, but z subscript 1 plus z subscript 2 simplifies to 8 straight i which has a modulus of 8

How do I find the argument of a complex number?

  • The argument of a complex number is the anti-clockwise angle that it makes when starting at the positive real axis on an Argand diagram
  • Arguments are measured in radians
    • Sometimes these can be given exact in terms of straight pi
  • The argument of z is written arg space z 
  • Arguments can be calculated using right-angled trigonometry
    • This involves using the tan ratio plus a sketch to decide whether it is positive/negative and acute/obtuse
  • Arguments are usually given in the range negative pi space less than space arg space z space less or equal than space pi   
    • Negative arguments are for complex numbers in the third and fourth quadrants
    • Occasionally you could be asked to give arguments in the range 0 space less than space arg space z space less or equal than space 2 pi
  • The argument of zero, arg space 0 is undefined (no angle can be drawn)

Exam Tip

Give non-exact arguments in radians to 3 significant figures.

Modulus-Argument (Polar) Form

The complex number z equals x plus straight i y is said to be in Cartesian form. There are, however, other ways to write a complex number, such as in modulus-argument (polar) form.

How do I write a complex number in modulus-argument (polar) form?

  • The Cartesian form of a complex number, z equals x plus straight i y, is written in terms of its real part, x, and its imaginary part, y
  • If we let r equals vertical line z vertical line and theta equals arg space z, then it is possible to write a complex number in terms of its modulus, r, and its argument, theta, called the modulus-argument (polar) form, given by...
    • z equals r open parentheses cos space theta plus isin space theta close parentheses
  • It is usual to give arguments in the range negative pi space less than space theta space less or equal than space pi
    • Negative arguments should be shown clearly, e.g. z equals 2 open parentheses cos space open parentheses negative pi over 3 close parentheses plus isin space open parentheses negative pi over 3 close parentheses close parentheseswithout simplifying cos invisible function application left parenthesis negative pi over 3 right parenthesis  to either cos invisible function application open parentheses pi over 3 close parentheses or 1 half
    • Occasionally you could be asked to give arguments in the range 0 space less or equal than space theta space less than space 2 pi
  • If a complex number is given in the form z equals r open parentheses cos space theta minus isin space theta close parentheses, then it is not currently in modulus-argument (polar) form due to the minus sign, but can be converted as follows…
    • By considering transformations of trigonometric functions, we see that negative sin invisible function application theta identical to sin invisible function application left parenthesis negative theta right parenthesis and cos invisible function application theta identical to cos invisible function application left parenthesis negative theta right parenthesis
    • Therefore z equals r open parentheses cos invisible function application theta minus isin invisible function application theta close parentheses can be written as z equals r open parentheses cos invisible function application open parentheses negative theta close parentheses plus isin invisible function application open parentheses negative theta close parentheses close parentheses, now in the correct form and indicating an argument of negative theta
  • To convert from modulus-argument (polar) form back to Cartesian form, evaluate the real and imaginary parts
    • E.g. z equals 2 open parentheses cos invisible function application open parentheses negative pi over 3 close parentheses plus isin invisible function application open parentheses negative pi over 3 close parentheses close parentheses becomes z equals 2 open parentheses 1 half plus straight i open parentheses negative fraction numerator square root of 3 over denominator 2 end fraction close parentheses close parentheses equals 1 minus square root of 3 blank straight i

What are the rules for moduli and arguments under multiplication and division?

  • When two complex numbers, z subscript 1 and z subscript 2, are multiplied to give z subscript 1 z subscript 2, their moduli are also multiplied
    • open vertical bar z subscript 1 z subscript 2 close vertical bar equals open vertical bar z subscript 1 close vertical bar vertical line z subscript 2 vertical line
  • When two complex numbers, z subscript 1 and z subscript 2, are divided to give z subscript 1 over z subscript 2, their moduli are also divided
    • open vertical bar z subscript 1 over z subscript 2 close vertical bar equals fraction numerator open vertical bar z subscript 1 close vertical bar over denominator open vertical bar z subscript 2 close vertical bar end fraction
  • When two complex numbers, z subscript 1 and z subscript 2, are multiplied to give z subscript 1 z subscript 2, their arguments are added
    • arg space open parentheses z subscript 1 z subscript 2 close parentheses equals arg space z subscript 1 plus arg space z subscript 2
  • When two complex numbers, z subscript 1and z subscript 2, are divided to give z subscript 1 over z subscript 2, their arguments are subtracted
    • arg space open parentheses z subscript 1 over z subscript 2 close parentheses equals arg space z subscript 1 minus arg space z subscript 2

How do I multiply complex numbers in modulus-argument (polar) form?

  • The main benefit of writing complex numbers in modulus-argument (polar) form is that they multiply and divide very easily (often quicker than when in Cartesian form)
  • To multiply two complex numbers, z subscript 1 and z subscript 2, in modulus-argument (polar) form we use the rules from above to multiply their moduli and add their arguments
    • open vertical bar z subscript 1 z subscript 2 close vertical bar equals open vertical bar z subscript 1 close vertical bar open vertical bar z subscript 2 close vertical bar
    • arg space left parenthesis z subscript 1 z subscript 2 right parenthesis equals arg space z subscript 1 plus arg space z subscript 2
  • So if z subscript 1 equals r subscript 1 left parenthesis cos space theta subscript 1 plus isin space theta subscript 1 right parenthesis and z subscript 2 equals r subscript 2 left parenthesis cos space theta subscript 2 plus isin space theta subscript 2 right parenthesis then the rules above give…
    • z subscript 1 z subscript 2 equals r subscript 1 r subscript 2 open parentheses cos space open parentheses theta subscript 1 plus theta subscript 2 close parentheses plus isin space open parentheses theta subscript 1 plus theta subscript 2 close parentheses close parentheses blank
  • Sometimes the new argument, theta subscript 1 plus theta subscript 2, does not lie in the range negative pi space less than space theta space less or equal than space pi (or  0 space less or equal than space theta space less than space 2 pi  if this is being used)
    • An out-of-range argument can be adjusted by either adding or subtracting 2 straight pi
    • E.g. If theta subscript 1 equals fraction numerator 2 pi over denominator 3 end fraction and theta subscript 2 equals pi over 2  then  theta subscript 1 plus theta subscript 2 space equals space fraction numerator 7 straight pi over denominator 6 end fraction 
      • This is currently not in the range , but by subtracting 2 straight pi from fraction numerator 7 straight pi over denominator 6 end fraction to give negative fraction numerator 5 straight pi over denominator 6 end fraction, a new argument is formed that lies in the correct range and represents the same angle on an Argand diagram
  • The rules of multiplying the moduli and adding the arguments can also be applied when…
    • …multiplying three complex numbers together, z subscript 1 z subscript 2 z subscript 3, or more
    • …finding powers of a complex number (e.g. z squared can be written as z z)
  • Whilst not examinable, the rules for multiplication can be proved algebraically by multiplying z subscript 1 equals r subscript 1 left parenthesis cos space theta subscript 1 plus isin space theta subscript 1 right parenthesis by z subscript 2 equals r subscript 2 left parenthesis cos space theta subscript 2 plus isin space theta subscript 2 right parenthesis, expanding the brackets and using compound angle formulae

How do I divide complex numbers in modulus-argument (polar) form?

  • To divide two complex numbers, z subscript 1 and z subscript 2 in modulus-argument (polar) form, we use the rules from above to divide their moduli and subtract their arguments
    • open vertical bar z subscript 1 over z subscript 2 close vertical bar blank equals fraction numerator open vertical bar z subscript 1 close vertical bar over denominator vertical line z subscript 2 vertical line end fraction
    • arg space open parentheses z subscript 1 over z subscript 2 close parentheses equals arg space z subscript 1 minus arg space z subscript 2
  • So if z subscript 1 equals r subscript 1 left parenthesis cos space theta subscript 1 plus isin space theta subscript 1 right parenthesis and z subscript 2 equals r subscript 2 left parenthesis cos space theta subscript 2 plus isin space theta subscript 2 right parenthesis then the rules above give…
    • z subscript 1 over z subscript 2 equals r subscript 1 over r subscript 2 open parentheses cos space open parentheses theta subscript 1 minus theta subscript 2 close parentheses plus isin space open parentheses theta subscript 1 minus theta subscript 2 close parentheses close parentheses blank
  • As with multiplication, sometimes the new argument, theta subscript 1 minus theta subscript 2, can lie out of the range negative pi space less than space theta space less or equal than space pi (or the range 0 space less than space theta space less or equal than space 2 pi if this is being used)
    • You can add or subtract 2 straight pi to bring out-of-range arguments back in range
  • Whilst not examinable, the rules for division can be proved algebraically by dividing z subscript 1 equals r subscript 1 left parenthesis cos space theta subscript 1 plus isin space theta subscript 1 right parenthesis by z subscript 2 equals r subscript 2 left parenthesis cos space theta subscript 2 plus isin space theta subscript 2 right parenthesis, using complex division and compound angle formulae

Exam Tip

  • The rules for multiplying and dividing in modulus-argument (polar) form must be learnt (they are not given in the formula booklet).
  • Remember to add or subtract 2 straight pi to any out-of-range arguments to bring them back in range.
  • If a question does not give a clear range for arguments, then both negative pi space less than space theta space less or equal than space pi  or  0 space less than space theta space less or equal than space 2 pi  would be accepted.


  • 1. Algebra & Functions
    • 1.1 Modulus Functions
      • 1.1.1 Modulus Functions - Sketching Graphs
        • 1.1.2 Modulus Functions - Solving Equations
        • 1.2 Polynomials
          • 1.2.1 Polynomial Division
            • 1.2.2 Factor & Remainder Theorem
              • 1.2.3 Factorisation
                • 1.2.4 Rational Expressions
                  • 1.2.5 Top Heavy Rational Expressions
                  • 1.3 Partial Fractions
                    • 1.3.1 Linear Denominators
                      • 1.3.2 Squared Linear Denominators
                      • 1.4 Further Modelling with Functions
                        • 1.4.1 Further Modelling with Functions
                        • 1.5 General Binomial Expansion
                          • 1.5.1 General Binomial Expansion
                            • 1.5.2 General Binomial Expansion - Subtleties
                              • 1.5.3 General Binomial Expansion - Multiple
                                • 1.5.4 Approximating values
                              • 2. Logs & Exponentials
                                • 2.1 Logarithmic & Exponential Function
                                  • 2.1.1 Exponential Functions
                                    • 2.1.2 Logarithmic Functions
                                      • 2.1.3 "e"
                                        • 2.1.4 Derivatives of Exponential Functions
                                        • 2.2 Laws of Logarithms
                                          • 2.2.1 Laws of Logarithms
                                            • 2.2.2 Exponential Equations
                                            • 2.3 Modelling with Logs & Exponentials
                                              • 2.3.1 Exponential Growth & Decay
                                                • 2.3.2 Using Exps & Logs in Modelling
                                                  • 2.3.3 Using Log Graphs in Modelling
                                                • 3. Trigonometry
                                                  • 3.1 Reciprocal Trigonometric Functions
                                                    • 3.1.1 Reciprocal Trig Functions - Definitions
                                                      • 3.1.2 Reciprocal Trig Functions - Graphs
                                                        • 3.1.3 Trigonometry - Further Identities
                                                        • 3.2 Compound & Double Angle Formulae
                                                          • 3.2.1 Compound Angle Formulae
                                                            • 3.2.2 Double Angle Formulae
                                                              • 3.2.3 R addition formulae Rcos Rsin etc
                                                              • 3.3 Further Trigonometric Equations
                                                                • 3.3.1 Strategy for Further Trigonometric Equations
                                                                • 3.4 Trigonometric Proof
                                                                  • 3.4.1 Trigonometric Proof
                                                                • 4. Differentiation
                                                                  • 4.1 Further Differentiation
                                                                    • 4.1.1 Differentiating Other Functions (Trig, ln & e etc)
                                                                      • 4.1.2 Product Rule
                                                                        • 4.1.3 Quotient Rule
                                                                        • 4.2 Implicit Differentiation
                                                                          • 4.2.1 Implicit Differentiation
                                                                          • 4.3 Differentiation of Parametric Equations
                                                                            • 4.3.1 Parametric Equations - Basics
                                                                              • 4.3.2 Parametric Equations - Eliminating the Parameter
                                                                                • 4.3.3 Parametric Equations - Sketching Graphs
                                                                                  • 4.3.4 Parametric Differentiation
                                                                                • 5. Integration
                                                                                  • 5.1 Further Integration
                                                                                    • 5.1.1 Integrating Other Functions (Trig, ln & e etc)
                                                                                      • 5.1.2 Integrating with Trigonometric Identities
                                                                                        • 5.1.3 f'(x)/f(x)
                                                                                          • 5.1.4 Substitution (Reverse Chain Rule)
                                                                                            • 5.1.5 Harder Substitution
                                                                                              • 5.1.6 Integration by Parts
                                                                                                • 5.1.7 Integration using Partial Fractions
                                                                                                  • 5.1.8 Integration Decision Making
                                                                                                  • 5.2 Differential Equations
                                                                                                    • 5.2.1 General Solutions
                                                                                                      • 5.2.2 Particular Solutions
                                                                                                        • 5.2.3 Separation of Variables
                                                                                                          • 5.2.4 Modelling with Differential Equations
                                                                                                            • 5.2.5 Solving & Interpreting Differential Equations
                                                                                                          • 6. Numerical Methods
                                                                                                            • 6.1 Numerical Solutions of Equations
                                                                                                              • 6.1.1 Change of Sign
                                                                                                                • 6.1.2 Change of Sign Failure
                                                                                                                  • 6.1.3 x = g(x) Iteration
                                                                                                                • 7. Vectors
                                                                                                                  • 7.1 Vectors in 2 Dimensions
                                                                                                                    • 7.1.1 Basic Vectors
                                                                                                                      • 7.1.2 Magnitude & Direction
                                                                                                                        • 7.1.3 Vector Addition
                                                                                                                          • 7.1.4 Position Vectors
                                                                                                                            • 7.1.5 Problem Solving using Vectors
                                                                                                                            • 7.2 Vectors in 3 Dimensions
                                                                                                                              • 7.2.1 Vectors in 3 Dimensions
                                                                                                                                • 7.2.2 Problem Solving using 3D Vectors
                                                                                                                                • 7.3 Further Vectors
                                                                                                                                  • 7.3.1 Equation of a Line in Vector Form
                                                                                                                                    • 7.3.2 Parallel, Intersecting & Skew Lines
                                                                                                                                      • 7.3.3 The Scalar ('Dot') Product
                                                                                                                                        • 7.3.4 Uses of the Scalar Product
                                                                                                                                      • 8. Complex Numbers
                                                                                                                                        • 8.1 Complex Numbers
                                                                                                                                          • 8.1.1 Intro to Complex Numbers
                                                                                                                                            • 8.1.2 Complex Conjugation & Division
                                                                                                                                              • 8.1.3 Square Roots of a Complex Number
                                                                                                                                                • 8.1.4 Complex Roots of Polynomials
                                                                                                                                                • 8.2 Argand Diagrams
                                                                                                                                                  • 8.2.1 Argand Diagrams - Basics
                                                                                                                                                    • 8.2.2 Geometry of Complex Addition, Subtraction & Conjugation
                                                                                                                                                      • 8.2.3 Modulus & Argument
                                                                                                                                                        • 8.2.4 Loci in Argand Diagrams
                                                                                                                                                          • 8.2.5 Inequalities & Regions in Argand Diagrams
                                                                                                                                                          • 8.3 Further Complex Numbers
                                                                                                                                                            • 8.3.1 Exponential Form of Complex Numbers
                                                                                                                                                              • 8.3.2 Geometry of Complex Multiplication & Division
                                                                                                                                                                • 8.3.3 Square Roots of a Complex Number - Advanced


                                                                                                                                                                DOWNLOAD PDF

                                                                                                                                                              Author: Amber

                                                                                                                                                              Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.


                                                                                                                                                              Save My Exams Logo
                                                                                                                                                              Resources
                                                                                                                                                              Home Join Support

                                                                                                                                                              Members
                                                                                                                                                              Members Home Account Login

                                                                                                                                                              Company
                                                                                                                                                              About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                              Quick Links
                                                                                                                                                              GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                               
                                                                                                                                                              © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                                                                                              IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.