Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Revision NotesPast Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic QuestionsRevision Notes
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast PapersRevision Notes
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Topic QuestionsRevision Notes

CIE A Level Maths: Pure 3

Revision Notes

Home / A Level / Maths: Pure 3 / CIE / Revision Notes / 8. Complex Numbers / 8.1 Complex Numbers / 8.1.2 Complex Conjugation & Division


8.1.2 Complex Conjugation & Division


Complex Conjugation & Division

When dividing complex numbers, we can use the complex conjugate to make the denominator a real number, which makes carrying out the division much easier.

What is a complex conjugate?

  • For a given complex number z equals a plus b straight i, the complex conjugate of z is denoted as z to the power of asterisk times, where z to the power of asterisk times equals a minus b straight i
  • If z equals a minus b straight i then z to the power of asterisk times equals a plus b straight i
  • You will find that:
    • z plus z to the power of asterisk times is always real because left parenthesis a plus b straight i right parenthesis plus left parenthesis a minus b straight i right parenthesis equals 2 a
      • For example: left parenthesis 6 plus 5 straight i right parenthesis space plus space left parenthesis 6 minus 5 straight i right parenthesis space equals space 6 plus 6 plus 5 straight i minus 5 straight i space equals space 12
    • z minus z to the power of asterisk times is always imaginary because open parentheses a plus b straight i close parentheses minus left parenthesis a minus b straight i right parenthesis equals 2 b straight i
      • For example: left parenthesis 6 plus 5 straight i right parenthesis space minus space left parenthesis 6 minus 5 straight i right parenthesis space equals space 6 minus 6 plus 5 straight i minus left parenthesis negative 5 straight i right parenthesis space equals space 10 straight i
    • z cross times z to the power of asterisk times is always real because open parentheses a plus b straight i close parentheses open parentheses a minus b straight i close parentheses equals a squared plus a b straight i minus a b straight i minus b squared straight i squared equals a squared plus b squared (as straight i squared equals negative 1)
      • For example: left parenthesis 6 plus 5 straight i right parenthesis left parenthesis 6 minus 5 straight i right parenthesis space equals space 36 space plus 30 straight i space – space 30 straight i space minus 25 straight i squared space equals space 36 space – space 25 left parenthesis negative 1 right parenthesis space equals space 61

 

How do I divide complex numbers?

  • When we divide complex numbers, we can express the calculation in the form of a fraction, and then start by multiplying the top and bottom by the conjugate of the denominator:
    • fraction numerator a plus b straight i over denominator c plus d straight i end fraction equals blank fraction numerator a plus b straight i over denominator c plus d straight i end fraction blank cross times blank fraction numerator c minus d straight i over denominator c minus d straight i end fraction
  • This ensures we are multiplying by 1; so not affecting the overall value
  • This gives us a real number as the denominator because we have a complex number multiplied by its conjugate (z z to the power of asterisk times)
  • This process is very similar to “rationalising the denominator” with surds which you may have studied at GCSE

Worked Example

8-1-2-dividing-complex-numbers

Exam Tip

  • We can speed up the process for finding z z asterisk timesby using the basic pattern of open parentheses x plus a close parentheses open parentheses x minus a close parentheses equals x squared minus a squared
  • We can apply this to complex numbers: open parentheses a plus b straight i close parentheses open parentheses a minus b straight i close parentheses equals a squared minus b squared straight i squared equals a squared plus b squared
    (using the fact that straight i squared equals negative 1)
  • So 3 plus 4 straight i multiplied by its conjugate would be 3 squared plus 4 squared equals 25


  • 1. Algebra & Functions
    • 1.1 Modulus Functions
      • 1.1.1 Modulus Functions - Sketching Graphs
        • 1.1.2 Modulus Functions - Solving Equations
        • 1.2 Polynomials
          • 1.2.1 Polynomial Division
            • 1.2.2 Factor & Remainder Theorem
              • 1.2.3 Factorisation
                • 1.2.4 Rational Expressions
                  • 1.2.5 Top Heavy Rational Expressions
                  • 1.3 Partial Fractions
                    • 1.3.1 Linear Denominators
                      • 1.3.2 Squared Linear Denominators
                        • 1.3.3 Quadratic Denominators
                        • 1.4 Further Modelling with Functions
                          • 1.4.1 Further Modelling with Functions
                          • 1.5 General Binomial Expansion
                            • 1.5.1 General Binomial Expansion
                              • 1.5.2 General Binomial Expansion - Subtleties
                                • 1.5.3 General Binomial Expansion - Multiple
                                  • 1.5.4 Approximating values
                                • 2. Logs & Exponentials
                                  • 2.1 Logarithmic & Exponential Function
                                    • 2.1.1 Exponential Functions
                                      • 2.1.2 Logarithmic Functions
                                        • 2.1.3 "e"
                                          • 2.1.4 Derivatives of Exponential Functions
                                          • 2.2 Laws of Logarithms
                                            • 2.2.1 Laws of Logarithms
                                              • 2.2.2 Exponential Equations
                                              • 2.3 Modelling with Logs & Exponentials
                                                • 2.3.1 Exponential Growth & Decay
                                                  • 2.3.2 Using Exps & Logs in Modelling
                                                    • 2.3.3 Using Log Graphs in Modelling
                                                  • 3. Trigonometry
                                                    • 3.1 Reciprocal Trigonometric Functions
                                                      • 3.1.1 Reciprocal Trig Functions - Definitions
                                                        • 3.1.2 Reciprocal Trig Functions - Graphs
                                                          • 3.1.3 Trigonometry - Further Identities
                                                          • 3.2 Compound & Double Angle Formulae
                                                            • 3.2.1 Compound Angle Formulae
                                                              • 3.2.2 Double Angle Formulae
                                                                • 3.2.3 R addition formulae Rcos Rsin etc
                                                                • 3.3 Further Trigonometric Equations
                                                                  • 3.3.1 Strategy for Further Trigonometric Equations
                                                                  • 3.4 Trigonometric Proof
                                                                    • 3.4.1 Trigonometric Proof
                                                                  • 4. Differentiation
                                                                    • 4.1 Further Differentiation
                                                                      • 4.1.1 Differentiating Other Functions (Trig, ln & e etc)
                                                                        • 4.1.2 Product Rule
                                                                          • 4.1.3 Quotient Rule
                                                                          • 4.2 Implicit Differentiation
                                                                            • 4.2.1 Implicit Differentiation
                                                                            • 4.3 Differentiation of Parametric Equations
                                                                              • 4.3.1 Parametric Equations - Basics
                                                                                • 4.3.2 Parametric Equations - Eliminating the Parameter
                                                                                  • 4.3.3 Parametric Equations - Sketching Graphs
                                                                                    • 4.3.4 Parametric Differentiation
                                                                                  • 5. Integration
                                                                                    • 5.1 Further Integration
                                                                                      • 5.1.1 Integrating Other Functions (Trig, ln & e etc)
                                                                                        • 5.1.2 Integrating with Trigonometric Identities
                                                                                          • 5.1.3 f'(x)/f(x)
                                                                                            • 5.1.4 Substitution (Reverse Chain Rule)
                                                                                              • 5.1.5 Harder Substitution
                                                                                                • 5.1.6 Integration by Parts
                                                                                                  • 5.1.7 Integration using Partial Fractions
                                                                                                    • 5.1.8 Integration Decision Making
                                                                                                    • 5.2 Differential Equations
                                                                                                      • 5.2.1 General Solutions
                                                                                                        • 5.2.2 Particular Solutions
                                                                                                          • 5.2.3 Separation of Variables
                                                                                                            • 5.2.4 Modelling with Differential Equations
                                                                                                              • 5.2.5 Solving & Interpreting Differential Equations
                                                                                                            • 6. Numerical Methods
                                                                                                              • 6.1 Numerical Solutions of Equations
                                                                                                                • 6.1.1 Change of Sign
                                                                                                                  • 6.1.2 Change of Sign Failure
                                                                                                                    • 6.1.3 x = g(x) Iteration
                                                                                                                  • 7. Vectors
                                                                                                                    • 7.1 Vectors in 2 Dimensions
                                                                                                                      • 7.1.1 Basic Vectors
                                                                                                                        • 7.1.2 Magnitude & Direction
                                                                                                                          • 7.1.3 Vector Addition
                                                                                                                            • 7.1.4 Position Vectors
                                                                                                                              • 7.1.5 Problem Solving using Vectors
                                                                                                                              • 7.2 Vectors in 3 Dimensions
                                                                                                                                • 7.2.1 Vectors in 3 Dimensions
                                                                                                                                  • 7.2.2 Problem Solving using 3D Vectors
                                                                                                                                  • 7.3 Further Vectors
                                                                                                                                    • 7.3.1 Equation of a Line in Vector Form
                                                                                                                                      • 7.3.2 Parallel, Intersecting & Skew Lines
                                                                                                                                        • 7.3.3 The Scalar ('Dot') Product
                                                                                                                                          • 7.3.4 Uses of the Scalar Product
                                                                                                                                        • 8. Complex Numbers
                                                                                                                                          • 8.1 Complex Numbers
                                                                                                                                            • 8.1.1 Intro to Complex Numbers
                                                                                                                                              • 8.1.2 Complex Conjugation & Division
                                                                                                                                                • 8.1.3 Square Roots of a Complex Number
                                                                                                                                                  • 8.1.4 Complex Roots of Polynomials
                                                                                                                                                  • 8.2 Argand Diagrams
                                                                                                                                                    • 8.2.1 Argand Diagrams - Basics
                                                                                                                                                      • 8.2.2 Geometry of Complex Addition, Subtraction & Conjugation
                                                                                                                                                        • 8.2.3 Modulus & Argument
                                                                                                                                                          • 8.2.4 Loci in Argand Diagrams
                                                                                                                                                            • 8.2.5 Inequalities & Regions in Argand Diagrams
                                                                                                                                                            • 8.3 Further Complex Numbers
                                                                                                                                                              • 8.3.1 Exponential Form of Complex Numbers
                                                                                                                                                                • 8.3.2 Geometry of Complex Multiplication & Division
                                                                                                                                                                  • 8.3.3 Square Roots of a Complex Number - Advanced


                                                                                                                                                                  DOWNLOAD PDF

                                                                                                                                                                Author: Jamie

                                                                                                                                                                Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.


                                                                                                                                                                Save My Exams Logo
                                                                                                                                                                Resources
                                                                                                                                                                Home Join Support

                                                                                                                                                                Members
                                                                                                                                                                Members Home Account Login

                                                                                                                                                                Company
                                                                                                                                                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                Quick Links
                                                                                                                                                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                 
                                                                                                                                                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                                                                                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.