Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Revision NotesPast Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic QuestionsRevision Notes
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast PapersRevision Notes
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Topic QuestionsRevision Notes

CIE A Level Maths: Pure 3

Revision Notes

Home / A Level / Maths: Pure 3 / CIE / Revision Notes / 8. Complex Numbers / 8.2 Argand Diagrams / 8.2.4 Loci in Argand Diagrams


8.2.4 Loci in Argand Diagrams


Loci in Argand Diagrams

How do I sketch the locus of bold Re blank bold italic z equals bold italic k or bold Im blank bold italic z equals bold italic k on an Argand diagram?

  • All complex numbers, z equals x plus straight i y, that satisfy the equation Re space z equals k lie on a vertical line with Cartesian equation x space equals space k
    • Any complex number along this vertical line will have a real part of k
  • All complex numbers, z equals x plus straight i y, that satisfy the equation Im blank z equals k lie on a horizontal line with Cartesian equation y space equals space k
    • Any complex number along this horizontal line will have an imaginary part of k
  • E.g. The loci Re space z equals 4 and Im blank z equals negative 3 are represented by the vertical line x space equals space 4 and the horizontal line y space equals space minus 3  

8-2-4_notes_fig1

Sketching the loci of  bold Re bold space bold italic z bold equals bold 4 and bold Im space bold italic z bold equals bold minus bold 3

How do I sketch the locus of open vertical bar bold italic z minus bold italic a close vertical bar equals bold italic k on an Argand diagram?

  • All complex numbers, z, that satisfy the equation open vertical bar z close vertical bar space equals space k lie on a circle of radius k about the origin
    • E.g. the locus of open vertical bar z close vertical bar space equals space 10 is a circle of radius 10, centred at the origin, as every complex number on that circle has a modulus of 10
  • For a given complex number, a, all complex numbers, z, that satisfy the equation open vertical bar z space minus space a close vertical bar space equals space k lie on a circle of radius k about the centre a
    • This is because open vertical bar z space minus space a close vertical bar represents the distance between complex numbers z and a 
    • E.g. the locus of open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 is a circle of radius 10 about left parenthesis 3 plus 4 straight i right parenthesis
  • Many equations need to be adjusted algebraically into the correct open vertical bar z space minus space a close vertical bar form
    • E.g. to find the centre of the circle open vertical bar z minus 8 straight i plus 3 close vertical bar equals 12, first rewrite it as open vertical bar z minus open parentheses negative 3 plus 8 straight i close parentheses close vertical bar equals 12, giving the centre as negative 3 plus 8 straight i
    • E.g. to find the centre of the circle open vertical bar z plus straight i close vertical bar equals 2, first rewrite it as open vertical bar z minus open parentheses negative straight i close parentheses close vertical bar equals 2 , giving the centre as open parentheses negative straight i close parentheses
    • Note that the centre of the circle open vertical bar z close vertical bar space equals space 5 is the origin (it can be thought of as open vertical bar z minus 0 close vertical bar equals 5)
  • In order to sketch correctly, check whether the origin lies outside, on or inside the circle
    • E.g. for the locus of open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 comma the distance from the centre of the circle, 3 plus 4 straight i, to the origin is 5 (by Pythagoras), which is less than the radius of 10; a sketch must therefore show the origin inside the circle
  • By knowing the radius and centre of a circle, the Cartesian equation of the circle can be found
    • The circle open vertical bar z minus open parentheses 3 plus 4 straight i close parentheses close vertical bar equals 10 has a radius of 10 and centre of left parenthesis 3 comma space 4 right parenthesis in coordinates, so the equation of the circle is open parentheses x minus 3 close parentheses squared plus open parentheses y minus 4 close parentheses squared equals 100

8-2-4_notes_fig2

Sketching the loci of  begin bold style stretchy vertical line z stretchy vertical line end style bold equals bold 10 and begin bold style stretchy vertical line z minus open parentheses 3 plus 4 i close parentheses stretchy vertical line end style bold equals bold 10

How do I sketch the locus of open vertical bar bold italic z minus bold italic a close vertical bar equals vertical line bold italic z minus bold italic b vertical line on an Argand diagram?

  • For two given complex numbers, a and b, all complex numbers, z, that satisfy the equation open vertical bar z minus a close vertical bar equals vertical line z minus b vertical line lie on the perpendicular bisector of a and b
    • This is because the distance from z to a must equal the distance from z to b
      • a condition that is satisfied by all the complex numbers, z, on the perpendicular bisector of a and b
    • E.g. the locus of open vertical bar z minus 3 plus 2 straight i close vertical bar equals vertical line z plus 8 vertical line can be rewritten as open vertical bar z minus open parentheses 3 minus 2 straight i close parentheses close vertical bar equals open vertical bar z minus open parentheses negative 8 close parentheses close vertical bar which is the perpendicular bisector of the points 3 minus 2 straight i and negative 8
  • A sketch of the perpendicular bisector is sufficient, without finding its exact equation (though this could be found using coordinate geometry methods)

8-2-4_notes_fig3

Sketching the loci of  stretchy vertical line bold italic z minus i stretchy vertical line equals open vertical bar bold italic z minus 3 i close vertical barand stretchy vertical line bold italic z minus open parentheses 3 minus 2 i close parentheses stretchy vertical line equals open vertical bar bold italic z minus open parentheses negative 8 close parentheses close vertical bar

How do I sketch the locus of bold arg bold space left parenthesis bold italic z minus bold italic a right parenthesis equals bold italic alpha  on an Argand diagram?

  • All complex numbers, z, that satisfy the equation arg space z equals alpha lie on a half-line from the origin at an angle of alpha to the positive real axis
    • Although the half-line starts at the origin, the origin itself (z space equals space 0) does not satisfy the equation arg space z equals alpha  as arg space 0 is undefined (there is no angle at the origin)
    • To show the exclusion of z space equals space 0 from the locus of arg space z equals alpha, a small open circle at the origin is used
    • E.g. the locus of arg space z equals straight pi over 4 is a half-line of angle straight pi over 4 to the positive real axis, starting from the origin, with an open circle at the origin
  • For a given complex number, a, all complex numbers, z, that satisfy the equation arg space left parenthesis z minus a right parenthesis equals alpha lie on a half-line from the point a at an angle of alpha to the positive real axis, with an open circle to show the exclusion of z space equals space a
    • E.g. the locus of arg space open parentheses z minus 1 minus 5 straight i close parentheses equals fraction numerator 2 pi over denominator 3 end fraction can be rewritten as arg space open parentheses z minus open parentheses 1 plus 5 straight i close parentheses close parentheses equals fraction numerator 2 pi over denominator 3 end fraction, which is a half-line of angle fraction numerator 2 pi over denominator 3 end fractionmeasured from the point 1 plus 5 straight i, with an open circle at 1 plus 5 straight i to show its exclusion
  • In some cases, the equation of the half-line can be found using a sketch to help
    • E.g. the locus of arg space z equals pi over 4is the half-line y space equals space x for x space greater than space 0  
    • E.g. the locus of arg space open parentheses z minus left parenthesis 8 plus 5 straight i close parentheses equals negative pi over 4 can be thought of, in coordinate geometry, as the half-line through left parenthesis 8 comma space 5 right parenthesiswith gradient -1, giving y space equals negative x plus 13  for  x space greater than space 8
    • Whilst not examinable, the half-line equation for a more general angle, arg space z equals alpha, is y equals open parentheses tan space alpha close parentheses x for x space greater than space 0, as the gradient equals opposite over adjacent equals tan space alpha

8-2-4_notes_fig4

Sketching the loci of  bold arg bold space bold italic z bold equals bold pi over bold 4and bold arg bold left parenthesis bold italic z bold minus stretchy left parenthesis 1 plus 5 i right parenthesis stretchy right parenthesis bold equals fraction numerator bold 2 bold pi over denominator bold 3 end fraction

Worked Example

8-2-4_example_fig1-part-1

8-2-4_example_fig1-part-2

Exam Tip

  • In the exam, do not worry about making your diagrams perfect.
  • A quick sketch with all the key features is sufficient.


  • 1. Algebra & Functions
    • 1.1 Modulus Functions
      • 1.1.1 Modulus Functions - Sketching Graphs
        • 1.1.2 Modulus Functions - Solving Equations
        • 1.2 Polynomials
          • 1.2.1 Polynomial Division
            • 1.2.2 Factor & Remainder Theorem
              • 1.2.3 Factorisation
                • 1.2.4 Rational Expressions
                  • 1.2.5 Top Heavy Rational Expressions
                  • 1.3 Partial Fractions
                    • 1.3.1 Linear Denominators
                      • 1.3.2 Squared Linear Denominators
                        • 1.3.3 Quadratic Denominators
                        • 1.4 Further Modelling with Functions
                          • 1.4.1 Further Modelling with Functions
                          • 1.5 General Binomial Expansion
                            • 1.5.1 General Binomial Expansion
                              • 1.5.2 General Binomial Expansion - Subtleties
                                • 1.5.3 General Binomial Expansion - Multiple
                                  • 1.5.4 Approximating values
                                • 2. Logs & Exponentials
                                  • 2.1 Logarithmic & Exponential Function
                                    • 2.1.1 Exponential Functions
                                      • 2.1.2 Logarithmic Functions
                                        • 2.1.3 "e"
                                          • 2.1.4 Derivatives of Exponential Functions
                                          • 2.2 Laws of Logarithms
                                            • 2.2.1 Laws of Logarithms
                                              • 2.2.2 Exponential Equations
                                              • 2.3 Modelling with Logs & Exponentials
                                                • 2.3.1 Exponential Growth & Decay
                                                  • 2.3.2 Using Exps & Logs in Modelling
                                                    • 2.3.3 Using Log Graphs in Modelling
                                                  • 3. Trigonometry
                                                    • 3.1 Reciprocal Trigonometric Functions
                                                      • 3.1.1 Reciprocal Trig Functions - Definitions
                                                        • 3.1.2 Reciprocal Trig Functions - Graphs
                                                          • 3.1.3 Trigonometry - Further Identities
                                                          • 3.2 Compound & Double Angle Formulae
                                                            • 3.2.1 Compound Angle Formulae
                                                              • 3.2.2 Double Angle Formulae
                                                                • 3.2.3 R addition formulae Rcos Rsin etc
                                                                • 3.3 Further Trigonometric Equations
                                                                  • 3.3.1 Strategy for Further Trigonometric Equations
                                                                  • 3.4 Trigonometric Proof
                                                                    • 3.4.1 Trigonometric Proof
                                                                  • 4. Differentiation
                                                                    • 4.1 Further Differentiation
                                                                      • 4.1.1 Differentiating Other Functions (Trig, ln & e etc)
                                                                        • 4.1.2 Product Rule
                                                                          • 4.1.3 Quotient Rule
                                                                          • 4.2 Implicit Differentiation
                                                                            • 4.2.1 Implicit Differentiation
                                                                            • 4.3 Differentiation of Parametric Equations
                                                                              • 4.3.1 Parametric Equations - Basics
                                                                                • 4.3.2 Parametric Equations - Eliminating the Parameter
                                                                                  • 4.3.3 Parametric Equations - Sketching Graphs
                                                                                    • 4.3.4 Parametric Differentiation
                                                                                  • 5. Integration
                                                                                    • 5.1 Further Integration
                                                                                      • 5.1.1 Integrating Other Functions (Trig, ln & e etc)
                                                                                        • 5.1.2 Integrating with Trigonometric Identities
                                                                                          • 5.1.3 f'(x)/f(x)
                                                                                            • 5.1.4 Substitution (Reverse Chain Rule)
                                                                                              • 5.1.5 Harder Substitution
                                                                                                • 5.1.6 Integration by Parts
                                                                                                  • 5.1.7 Integration using Partial Fractions
                                                                                                    • 5.1.8 Integration Decision Making
                                                                                                    • 5.2 Differential Equations
                                                                                                      • 5.2.1 General Solutions
                                                                                                        • 5.2.2 Particular Solutions
                                                                                                          • 5.2.3 Separation of Variables
                                                                                                            • 5.2.4 Modelling with Differential Equations
                                                                                                              • 5.2.5 Solving & Interpreting Differential Equations
                                                                                                            • 6. Numerical Methods
                                                                                                              • 6.1 Numerical Solutions of Equations
                                                                                                                • 6.1.1 Change of Sign
                                                                                                                  • 6.1.2 Change of Sign Failure
                                                                                                                    • 6.1.3 x = g(x) Iteration
                                                                                                                  • 7. Vectors
                                                                                                                    • 7.1 Vectors in 2 Dimensions
                                                                                                                      • 7.1.1 Basic Vectors
                                                                                                                        • 7.1.2 Magnitude & Direction
                                                                                                                          • 7.1.3 Vector Addition
                                                                                                                            • 7.1.4 Position Vectors
                                                                                                                              • 7.1.5 Problem Solving using Vectors
                                                                                                                              • 7.2 Vectors in 3 Dimensions
                                                                                                                                • 7.2.1 Vectors in 3 Dimensions
                                                                                                                                  • 7.2.2 Problem Solving using 3D Vectors
                                                                                                                                  • 7.3 Further Vectors
                                                                                                                                    • 7.3.1 Equation of a Line in Vector Form
                                                                                                                                      • 7.3.2 Parallel, Intersecting & Skew Lines
                                                                                                                                        • 7.3.3 The Scalar ('Dot') Product
                                                                                                                                          • 7.3.4 Uses of the Scalar Product
                                                                                                                                        • 8. Complex Numbers
                                                                                                                                          • 8.1 Complex Numbers
                                                                                                                                            • 8.1.1 Intro to Complex Numbers
                                                                                                                                              • 8.1.2 Complex Conjugation & Division
                                                                                                                                                • 8.1.3 Square Roots of a Complex Number
                                                                                                                                                  • 8.1.4 Complex Roots of Polynomials
                                                                                                                                                  • 8.2 Argand Diagrams
                                                                                                                                                    • 8.2.1 Argand Diagrams - Basics
                                                                                                                                                      • 8.2.2 Geometry of Complex Addition, Subtraction & Conjugation
                                                                                                                                                        • 8.2.3 Modulus & Argument
                                                                                                                                                          • 8.2.4 Loci in Argand Diagrams
                                                                                                                                                            • 8.2.5 Inequalities & Regions in Argand Diagrams
                                                                                                                                                            • 8.3 Further Complex Numbers
                                                                                                                                                              • 8.3.1 Exponential Form of Complex Numbers
                                                                                                                                                                • 8.3.2 Geometry of Complex Multiplication & Division
                                                                                                                                                                  • 8.3.3 Square Roots of a Complex Number - Advanced


                                                                                                                                                                  DOWNLOAD PDF

                                                                                                                                                                Author: Amber

                                                                                                                                                                Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.


                                                                                                                                                                Save My Exams Logo
                                                                                                                                                                Resources
                                                                                                                                                                Home Join Support

                                                                                                                                                                Members
                                                                                                                                                                Members Home Account Login

                                                                                                                                                                Company
                                                                                                                                                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                Quick Links
                                                                                                                                                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                 
                                                                                                                                                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                                                                                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.