Syllabus Edition

First teaching 2021

Last exams 2024

|

Probability Tree Diagrams (CIE IGCSE Maths: Core)

Revision Note

Test Yourself
Dan

Author

Dan

Expertise

Maths

Tree Diagrams

What is a tree diagram?

  • A tree diagram is used to
    • show the outcomes of multiple events that happen one after the other
    • help calculate probabilities when AND and/or OR’s are involved
  • Tree diagrams are mostly used when an event only has two outcomes of interest
    • e.g. “Rolling a 6 on a dice” and “Not rolling a 6 on a dice"
    • These outcomes are mutually exclusive (cannot happen at the same time)

How do I draw and label a tree diagram?

  • The first set of branches will represent the outcomes of the 1st experiment
    • in general we can call these outcomes "A" and "not A"
  • There will be two sets of branches representing the outcomes of the 2nd experiment
    • the first set will follow on from "A" in the 1st experiment
    • the second set will follow on from "not A" in the 1st experiment
    • for the 2nd experiment we can generally call the outcomes "B" and "not B"
  • Probabilities for each outcome are written along the branches of the tree
  • At the end of the diagram we can collect together the combinations of the 2 experiments
    • "A" and "B"
    • "A and not B"
    • "not A and B"
    • "not A and not B"

3-1-3-fig1-tree-setup

How do I solve probability problems involving tree diagrams?

  • Interpret questions in terms of AND and/or OR
  • Draw, or complete a given, tree diagram
    • Determine any missing probabilities
      • often using 1 minus straight P left parenthesis A right parenthesis
  • Write down the outcomes of both events and work out their probabilities
    • These are AND statements
    • straight P left parenthesis A space bold AND bold space B right parenthesis equals straight P left parenthesis A right parenthesis cross times straight P left parenthesis B right parenthesis
    • You may see this as “Multiply along branches”
  • If more than one outcome is required then add their probabilities
    • These are OR statements
    • straight P left parenthesis A B space bold OR space " not space A " " not space B " right parenthesis equals straight P left parenthesis A B right parenthesis plus straight P left parenthesis " not space A " " not space B " right parenthesis
    • You may see this as “Add different outcomes”
  • When you are confident with tree diagrams you can just pull out the outcome(s) you need
    • you do not routinely have to work all of them out

Exam Tip

  • It can be tricky to get a tree diagram looking neat and clear on the first first attempt
    • it can be worth sketching a rough one first
    • just keep an eye on that exam clock! 
  • Tree diagrams make particularly frequent use of the result straight P left parenthesis not space A italic right parenthesis italic equals 1 italic minus P italic left parenthesis A italic right parenthesis
  • Tree diagrams have built-in checks
    • the probabilities for each pair of branches should add up to 1
    • the probabilities for all final outcomes should add up to 1
  • When multiplying along branches with fractions it is often a good idea NOT to simplify any fractions (except possibly the final answer to the question)
    • This is because fractions will often need to be added together, which is easier to do if they all have the same denominator

Worked example

A worker will drive through two sets of traffic lights on their way to work.
The probability of the first set of traffic lights being on green is 5 over 7.
The probability of the second set of traffic lights being on green is 8 over 9.

a)

Draw and label a tree diagram including the probabilities of all possible outcomes.

Both sets of lights will either be on green (G) or red (R) (we can ignore yellow/amber for this situation).
We know the probabilities of the traffic lights being on green, so need to work out the probabilities of them being on red.

straight P open parentheses 1 to the power of st space R close parentheses equals 1 minus straight P open parentheses 1 to the power of st space G close parentheses equals 1 minus 5 over 7 equals 2 over 7
straight P open parentheses 2 to the power of nd space R close parentheses equals 1 minus straight P open parentheses 2 to the power of nd space G close parentheses equals 1 minus 8 over 9 equals 1 over 9

We also need to work out the combined probabilities of both traffic lights.

AD8TrDKf_cie-igcse-we-4-2-3-tree-diagram-image

b)

Find the probability that both sets of traffic lights are on red.

As we have written the probabilities of the combined events we can write the answer straight down.

c)

Find the probability that at least one set of traffic lights are on red.

This would be "R AND G" OR "G AND R" OR "R AND R" so we need to add three of the final probabilities.

straight P open parentheses at space least space one space R close parentheses space equals space straight P open parentheses G comma space R close parentheses space plus space straight P open parentheses R comma space G close parentheses space plus space straight P open parentheses R comma space R close parentheses space equals space 5 over 63 space plus space 16 over 63 space plus space 2 over 63 space equals space 23 over 63

Because 'at least one R' is the same as 'not both G', we can also calculate this by subtracting P(G,G) from 1.

straight P stretchy left parenthesis at space least space one space R stretchy right parenthesis space equals space 1 space minus space straight P open parentheses G comma space G close parentheses space equals space 1 space minus space 40 over 63 space equals space 23 over 63 

Combined Probability

What do we mean by combined probabilities?

  • In general this means there is more than one event to bear in mind when considering probabilities
    • these events may be independent or mutually exclusive
    • they may involve an event that follows on from a previous event
      • e.g. Rolling a dice, followed by flipping a coin

How do I work with and calculate combined probabilities?

  • In your head, try to rephrase each question as an AND and/or OR probability statement
    • e.g. The probability of rolling a 6 followed by flipping heads would be "the probability of rolling a 6 AND the probability of flipping heads"
    • In general,
      • AND means multiply (cross times) and is used for independent events
      • OR mean add (plus) and is used for mutually exclusive events
  • The fact that all probabilities sum to 1 is often used in combined probability questions
    • In particular when we are interested in an event "happening" or "not happening"
      • e.g.  straight P open parentheses rolling space straight a space 6 close parentheses equals 1 over 6  so  straight P open parentheses NOT space rolling space straight a space 6 close parentheses equals 1 minus 1 over 6 equals 5 over 6
  • Tree diagrams can be useful for calculating combined probabilities
    • especially when there is more than one event but you are only concerned with two outcomes from each
      • e.g.  The probability of being stopped at one set of traffic lights and also being stopped at a second set of lights
    • however unless a question specifically tells you to, you don't have to draw a diagram
    • for many questions it is quicker simply to consider the possible options and apply the AND and OR rules without drawing a diagram

Worked example

A box contains 3 blue counters and 8 red counters.
A counter is taken at random and its colour noted.
The counter is put back into the box.
A second counter is then taken at random, and its colour noted.

Work out the probability that

i)

both counters are red,

ii)

the two counters are different colours.

i)

This is an "AND" question: 1st counter red AND 2nd counter red.

table row cell straight P open parentheses both space red close parentheses end cell equals cell straight P open parentheses R close parentheses cross times straight P open parentheses R close parentheses end cell row blank equals cell 8 over 11 cross times 8 over 11 end cell row blank equals cell 64 over 121 end cell end table

table row cell bold P stretchy left parenthesis both space red stretchy right parenthesis end cell bold equals cell bold 64 over bold 121 end cell end table

ii)

This is an "AND" and "OR" question: [ 1st red AND 2nd green ] OR [ 1st green AND 2nd red ].

table row cell straight P open parentheses one space of space each close parentheses end cell equals cell open square brackets straight P open parentheses R close parentheses cross times straight P open parentheses G close parentheses close square brackets plus open square brackets straight P open parentheses G close parentheses plus straight P open parentheses R close parentheses close square brackets end cell row blank equals cell 8 over 11 cross times 3 over 11 plus 3 over 11 cross times 8 over 11 end cell row blank equals cell 24 over 121 plus 24 over 121 end cell row blank equals cell 48 over 121 end cell end table

table row cell bold P stretchy left parenthesis one space of space each stretchy right parenthesis end cell bold equals cell bold 48 over bold 121 end cell end table

In the second line of working in part (ii) we are multiplying the same two fractions together twice, just 'the other way round'.

It would be possible to write that instead as 2 space cross times space open parentheses 8 over 11 cross times 3 over 11 close parentheses space equals space 2 space cross times space 24 over 121 space equals space 48 over 121 space.

That sort of 'shortcut' is often possible in questions like this.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Dan

Author: Dan

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.