Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsGeographyHistoryPsychologySociology
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychology
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Other Subjects
CIE English LiteratureBusinessComputer ScienceEconomicsGeographyHistorySociology
Edexcel English LiteratureBusinessComputer ScienceGeographyHistory
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographyPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel IAL English LiteratureGeographyPsychology
CIE IAL History
BiologyChemistryPhysics
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Up to 33% off discounts extended!

Ace your exams with up to 33% off our Annual and Quarterly plans for a limited time only. T&Cs apply.


Ok, hide this.

IB DP Maths: AI HL

Revision Notes

Home / DP / Maths: AI HL / IB / Revision Notes / 4. Statistics & Probability / 4.6 Random Variables / 4.6.2 Unbiased Estimates


4.6.2 Unbiased Estimates


Unbiased Estimates

What is an unbiased estimator of a population parameter?

  • An estimator is a random variable that is used to estimate a population parameter
    • An estimate is the value produced by the estimator when a sample is used
  • An estimator is called unbiased if its expected value is equal to the population parameter
    • An estimate from an unbiased estimator is called an unbiased estimate
    • This means that the mean of the unbiased estimates will get closer to the population parameter as more samples are taken
  • The sample mean is an unbiased estimate for the population mean
  • The sample variance is not an unbiased estimate for the population variance
    • On average the sample variance will underestimate the population variance
    • As the sample size increases the sample variance gets closer to the unbiased estimate

What are the formulae for unbiased estimates of the mean and variance of a population?

  • A sample of n data values (x1, x2, ... etc) can be used to find unbiased estimates for the mean and variance of the population
  • An unbiased estimate for the mean μ of a population can be calculated using
    •  x with bar on top equals fraction numerator sum x over denominator n end fraction
  • An unbiased estimate for the variance σ² of a population can be calculated using
    • s subscript n minus 1 end subscript superscript 2 equals fraction numerator n over denominator n minus 1 end fraction s subscript n superscript 2
    • This is given in the formula booklet
    • s subscript n superscript 2 is the variance of the sample data
      • s subscript n superscript 2 equals fraction numerator sum left parenthesis x minus x with bar on top right parenthesis squared over denominator n end fraction equals fraction numerator sum x squared over denominator n end fraction minus open parentheses x with bar on top close parentheses squared
  • Different calculators can use different notations for s subscript n minus 1 end subscript superscript 2
    • sigma subscript n minus 1 end subscript superscript 2, s subscript blank superscript 2, s with hat on top subscript blank superscript 2 are notations you might see
    • You may also see the square roots of these

Is sn-1 an unbiased estimate for the standard deviation?

  • Unfortunately sn-1 is not an unbiased estimate for the standard deviation of the population
  • It is better to work with the unbiased variance rather than standard deviation
  • There is not a formula for an unbiased estimate for the standard deviation that works for all populations
    • Therefore you will not be asked to find one in your exam

How do I show the sample mean is an unbiased estimate for the population mean?

  • You do not need to learn this proof
    • It is simply here to help with your understanding
  • Suppose the population of X has mean μ and variance σ²  
  • Take a sample of n observations
    • X1, X2, ..., Xn
    • E(Xi) = μ
  • Using the formula for a linear combination of n independent variables:

table attributes columnalign right center left columnspacing 0px end attributes row cell straight E invisible function application open parentheses X with bar on top close parentheses end cell equals cell straight E invisible function application open parentheses fraction numerator X subscript 1 plus X subscript 2 plus blank horizontal ellipsis plus X subscript n over denominator n end fraction close parentheses end cell row blank equals cell fraction numerator straight E invisible function application open parentheses X subscript 1 close parentheses plus straight E invisible function application open parentheses X subscript 2 close parentheses plus blank horizontal ellipsis plus straight E open parentheses X subscript n close parentheses over denominator n end fraction end cell row blank equals cell fraction numerator mu plus mu plus blank horizontal ellipsis plus mu blank over denominator n end fraction end cell row blank equals cell fraction numerator n mu over denominator n end fraction end cell row blank equals mu end table
  • As table attributes columnalign right center left columnspacing 0px end attributes row cell straight E invisible function application open parentheses X with bar on top close parentheses end cell equals mu end table this shows the formula will produce an unbiased estimate for the population mean

Why is there a divisor of n-1 in the unbiased estimate for the variance?

  • You do not need to learn this proof
    • It is simply here to help with your understanding
  • Suppose the population of X has mean μ and variance σ²  
  • Take a sample of n observations
    • X1, X2, ..., Xn
    • E(Xi) = μ
    • Var(Xi) = σ2
  • Using the formula for a linear combination of n independent variables:

table attributes columnalign right center left columnspacing 0px end attributes row cell Var invisible function application open parentheses X with bar on top close parentheses end cell equals cell Var invisible function application open parentheses fraction numerator X subscript 1 plus X subscript 2 plus blank horizontal ellipsis plus X subscript n over denominator n end fraction close parentheses end cell row blank equals cell fraction numerator Var invisible function application open parentheses X subscript 1 close parentheses plus Var invisible function application open parentheses X subscript 2 close parentheses plus blank horizontal ellipsis plus Var open parentheses X subscript n close parentheses over denominator n squared end fraction end cell row blank equals cell fraction numerator sigma squared plus sigma squared plus blank horizontal ellipsis plus sigma squared blank over denominator n squared end fraction end cell row blank equals cell fraction numerator n sigma squared over denominator n squared end fraction end cell row blank equals cell sigma squared over n end cell end table
  • It can be shown that straight E left parenthesis X with bar on top squared right parenthesis equals mu squared plus sigma squared over n
    • This comes from rearranging Var invisible function application open parentheses X with bar on top close parentheses equals straight E invisible function application open parentheses X with bar on top squared close parentheses minus open square brackets straight E invisible function application open parentheses X with bar on top close parentheses close square brackets squared
  • It can be shown that straight E left parenthesis X squared right parenthesis equals straight E open parentheses X subscript i squared close parentheses equals mu squared plus sigma squared
    • This comes from rearranging Var invisible function application open parentheses X close parentheses equals straight E invisible function application open parentheses X squared close parentheses minus open square brackets straight E invisible function application open parentheses X close parentheses close square brackets squared
  • Using the formula for a linear combination of n independent variables:
table attributes columnalign right center left columnspacing 0px end attributes row cell straight E invisible function application open parentheses S subscript n superscript 2 close parentheses end cell equals cell straight E invisible function application open parentheses fraction numerator sum X subscript i superscript 2 over denominator n end fraction minus X with minus on top squared close parentheses end cell row blank equals cell fraction numerator sum straight E invisible function application left parenthesis X subscript i superscript 2 right parenthesis blank over denominator n end fraction minus straight E invisible function application open parentheses X with bar on top squared close parentheses end cell row blank equals cell fraction numerator sum open parentheses mu squared plus sigma squared close parentheses over denominator n end fraction minus open parentheses mu squared plus sigma squared over n close parentheses end cell row blank equals cell fraction numerator n open parentheses mu squared plus sigma squared close parentheses over denominator n end fraction minus open parentheses mu squared plus sigma squared over n close parentheses end cell row blank equals cell mu squared plus sigma squared minus open parentheses mu squared plus sigma squared over n close parentheses end cell row blank equals cell sigma squared minus sigma squared over n end cell row blank equals cell fraction numerator n sigma squared minus sigma squared over denominator n end fraction end cell row blank equals cell fraction numerator n minus 1 over denominator n end fraction sigma ² end cell end table

  • As straight E open parentheses S subscript n superscript 2 close parentheses not equal to straight sigma squared this shows that the sample variance is not unbiased
    • You need to multiply by fraction numerator n over denominator n minus 1 end fraction
    • straight E open parentheses S subscript n minus 1 end subscript superscript 2 close parentheses equals straight sigma squared

Worked Example

The times, X minutes, spent on daily revision of a random sample of 50 IB students from the UK are summarised as follows.

n equals 50 sum x equals 6174 s subscript n superscript 2 equals 1384.3

Calculate unbiased estimates of the population mean and variance of the times spent on daily revision by IB students in the UK.

4-6-2-ib-ai-hl-unbiased-estimates-we-solution



  • 1. Number & Algebra
    • 1.1 Number Toolkit
      • 1.1.1 Standard Form
        • 1.1.2 Approximation & Estimation
          • 1.1.3 GDC: Solving Equations
          • 1.2 Exponentials & Logs
            • 1.2.1 Exponents
            • 1.3 Sequences & Series
              • 1.3.1 Language of Sequences & Series
                • 1.3.2 Arithmetic Sequences & Series
                  • 1.3.3 Geometric Sequences & Series
                    • 1.3.4 Applications of Sequences & Series
                    • 1.4 Financial Applications
                      • 1.4.1 Compound Interest & Depreciation
                        • 1.4.2 Amortisation & Annuities
                        • 1.5 Complex Numbers
                          • 1.5.1 Intro to Complex Numbers
                            • 1.5.2 Modulus & Argument
                              • 1.5.3 Introduction to Argand Diagrams
                              • 1.6 Further Complex Numbers
                                • 1.6.1 Geometry of Complex Numbers
                                  • 1.6.2 Forms of Complex Numbers
                                    • 1.6.3 Applications of Complex Numbers
                                    • 1.7 Matrices
                                      • 1.7.1 Introduction to Matrices
                                        • 1.7.2 Operations with Matrices
                                          • 1.7.3 Determinants & Inverses
                                            • 1.7.4 Solving Systems of Linear Equations with Matrices
                                            • 1.8 Eigenvalues & Eigenvectors
                                              • 1.8.1 Eigenvalues & Eigenvectors
                                                • 1.8.2 Applications of Matrices
                                              • 2. Functions
                                                • 2.1 Linear Functions & Graphs
                                                  • 2.1.1 Equations of a Straight Line
                                                  • 2.2 Further Functions & Graphs
                                                    • 2.2.1 Functions
                                                      • 2.2.2 Graphing Functions
                                                        • 2.2.3 Properties of Graphs
                                                        • 2.3 Modelling with Functions
                                                          • 2.3.1 Linear Models
                                                            • 2.3.2 Quadratic & Cubic Models
                                                              • 2.3.3 Exponential Models
                                                                • 2.3.4 Direct & Inverse Variation
                                                                  • 2.3.5 Sinusoidal Models
                                                                    • 2.3.6 Strategy for Modelling Functions
                                                                    • 2.4 Functions Toolkit
                                                                      • 2.4.1 Composite & Inverse Functions
                                                                      • 2.5 Transformations of Graphs
                                                                        • 2.5.1 Translations of Graphs
                                                                          • 2.5.2 Reflections of Graphs
                                                                            • 2.5.3 Stretches of Graphs
                                                                              • 2.5.4 Composite Transformations of Graphs
                                                                              • 2.6 Further Modelling with Functions
                                                                                • 2.6.1 Properties of Further Graphs
                                                                                  • 2.6.2 Natural Logarithmic Models
                                                                                    • 2.6.3 Logistic Models
                                                                                      • 2.6.4 Piecewise Models
                                                                                      • 2.7 Modelling with Logarithms
                                                                                        • 2.7.1 Logarthmic Scales
                                                                                          • 2.7.2 Linearising using Logarithms
                                                                                        • 3. Geometry & Trigonometry
                                                                                          • 3.1 Geometry Toolkit
                                                                                            • 3.1.1 Coordinate Geometry
                                                                                              • 3.1.2 Radian Measure
                                                                                                • 3.1.3 Arcs & Sectors
                                                                                                • 3.2 Geometry of 3D Shapes
                                                                                                  • 3.2.1 3D Coordinate Geometry
                                                                                                    • 3.2.2 Volume & Surface Area
                                                                                                    • 3.3 Trigonometry
                                                                                                      • 3.3.1 Pythagoras & Right-Angled Triganometry
                                                                                                        • 3.3.2 Non Right-Angled Trigonometry
                                                                                                          • 3.3.3 Applications of Trigonometry & Pythagoras
                                                                                                          • 3.4 Further Trigonometry
                                                                                                            • 3.4.1 The Unit Circle
                                                                                                              • 3.4.2 Simple Identities
                                                                                                                • 3.4.3 Solving Trigonometric Equations
                                                                                                                • 3.5 Voronoi Diagrams
                                                                                                                  • 3.5.1 Voronoi Diagrams
                                                                                                                    • 3.5.2 Toxic Waste Dump Problem
                                                                                                                    • 3.6 Matrix Transformations
                                                                                                                      • 3.6.1 Matrix Transformations
                                                                                                                        • 3.6.2 Determinant of a Transformation Matrix
                                                                                                                        • 3.7 Vector Properties
                                                                                                                          • 3.7.1 Introduction to Vectors
                                                                                                                            • 3.7.2 Position Vectors
                                                                                                                              • 3.7.3 Magnitude of a Vector
                                                                                                                                • 3.7.4 The Scalar Product
                                                                                                                                  • 3.7.5 The Vector Product
                                                                                                                                    • 3.7.6 Components of Vectors
                                                                                                                                    • 3.8 Vector Equations of Lines
                                                                                                                                      • 3.8.1 Vector Equations of Lines
                                                                                                                                      • 3.9 Modelling with Vectors
                                                                                                                                        • 3.9.1 Kinematics with Vectors
                                                                                                                                          • 3.9.2 Constant & Variable Velocity
                                                                                                                                          • 3.10 Graph Theory
                                                                                                                                            • 3.10.1 Introduction to Graph Theory
                                                                                                                                              • 3.10.2 Walks & Adjacency Matrices
                                                                                                                                                • 3.10.3 Minimum Spanning Trees
                                                                                                                                                  • 3.10.4 Chinese Postman Problem
                                                                                                                                                    • 3.10.5 Travelling Salesman Problem
                                                                                                                                                      • 3.10.6 Bounds for Travelling Salesman Problem
                                                                                                                                                    • 4. Statistics & Probability
                                                                                                                                                      • 4.1 Statistics Toolkit
                                                                                                                                                        • 4.1.1 Sampling
                                                                                                                                                          • 4.1.2 Data Collection
                                                                                                                                                            • 4.1.3 Statistical Measures
                                                                                                                                                              • 4.1.4 Frequency Tables
                                                                                                                                                                • 4.1.5 Linear Transformations of Data
                                                                                                                                                                  • 4.1.6 Outliers
                                                                                                                                                                    • 4.1.7 Univariate Data
                                                                                                                                                                      • 4.1.8 Interpreting Data
                                                                                                                                                                      • 4.2 Correlation & Regression
                                                                                                                                                                        • 4.2.1 Bivariate Data
                                                                                                                                                                          • 4.2.2 Correlation Coefficients
                                                                                                                                                                            • 4.2.3 Linear Regression
                                                                                                                                                                            • 4.3 Further Correlation & Regression
                                                                                                                                                                              • 4.3.1 Non-linear Regression
                                                                                                                                                                              • 4.4 Probability
                                                                                                                                                                                • 4.4.1 Probability & Types of Events
                                                                                                                                                                                  • 4.4.2 Conditional Probability
                                                                                                                                                                                    • 4.4.3 Sample Space Diagrams
                                                                                                                                                                                    • 4.5 Probability Distributions
                                                                                                                                                                                      • 4.5.1 Discrete Probability Distributions
                                                                                                                                                                                        • 4.5.2 Expected Values
                                                                                                                                                                                        • 4.6 Random Variables
                                                                                                                                                                                          • 4.6.1 Linear Combinations of Random Variables
                                                                                                                                                                                            • 4.6.2 Unbiased Estimates
                                                                                                                                                                                            • 4.7 Binomial Distribution
                                                                                                                                                                                              • 4.7.1 The Binomial Distribution
                                                                                                                                                                                                • 4.7.2 Calculating Binomial Probabilities
                                                                                                                                                                                                • 4.8 Normal Distribution
                                                                                                                                                                                                  • 4.8.1 The Normal Distribution
                                                                                                                                                                                                    • 4.8.2 Calculations with Normal Distribution
                                                                                                                                                                                                    • 4.9 Further Normal Distribution (inc Central Limit Theorem)
                                                                                                                                                                                                      • 4.9.1 Sample Mean Distribution
                                                                                                                                                                                                        • 4.9.2 Confidence Interval for the Mean
                                                                                                                                                                                                        • 4.10 Poisson Distribution
                                                                                                                                                                                                          • 4.10.1 Poisson Distribution
                                                                                                                                                                                                            • 4.10.2 Calculating Poisson Probabilities
                                                                                                                                                                                                            • 4.11 Hypothesis Testing
                                                                                                                                                                                                              • 4.11.1 Hypothesis Testing
                                                                                                                                                                                                                • 4.11.2 Chi-squared Test for Independence
                                                                                                                                                                                                                  • 4.11.3 Goodness of Fit Test
                                                                                                                                                                                                                  • 4.12 Further Hypothesis Testing
                                                                                                                                                                                                                    • 4.12.1 Hypothesis Testing for Mean (One Sample)
                                                                                                                                                                                                                      • 4.12.2 Hypothesis Testing for Mean (Two Sample)
                                                                                                                                                                                                                        • 4.12.3 Binomial Hypothesis Testing
                                                                                                                                                                                                                          • 4.12.4 Poisson Hypothesis Testing
                                                                                                                                                                                                                            • 4.12.5 Hypothesis Testing for Correlation
                                                                                                                                                                                                                              • 4.12.6 Type I & Type II Errors
                                                                                                                                                                                                                              • 4.13 Transition Matrices & Markov Chains
                                                                                                                                                                                                                                • 4.13.1 Markov Chains
                                                                                                                                                                                                                                  • 4.13.2 Transition Matrices
                                                                                                                                                                                                                                • 5. Calculus
                                                                                                                                                                                                                                  • 5.1 Differentiation
                                                                                                                                                                                                                                    • 5.1.1 Introduction to Differentiation
                                                                                                                                                                                                                                      • 5.1.2 Applications of Differentiation
                                                                                                                                                                                                                                        • 5.1.3 Modelling with Differentiation
                                                                                                                                                                                                                                        • 5.2 Further Differentiation
                                                                                                                                                                                                                                          • 5.2.1 Differentiating Special Functions
                                                                                                                                                                                                                                            • 5.2.2 Techniques of Differentiation
                                                                                                                                                                                                                                              • 5.2.3 Related Rates of Change
                                                                                                                                                                                                                                                • 5.2.4 Second Order Derivatives
                                                                                                                                                                                                                                                  • 5.2.5 Further Applications of Differentiation
                                                                                                                                                                                                                                                    • 5.2.6 Concavity & Points of Inflection
                                                                                                                                                                                                                                                    • 5.3 Integration
                                                                                                                                                                                                                                                      • 5.3.1 Trapezoid Rule: Numerical Integration
                                                                                                                                                                                                                                                        • 5.3.2 Introduction to Integration
                                                                                                                                                                                                                                                          • 5.3.3 Applications of Integration
                                                                                                                                                                                                                                                          • 5.4 Further Integration
                                                                                                                                                                                                                                                            • 5.4.1 Integrating Special Functions
                                                                                                                                                                                                                                                              • 5.4.2 Techniques of Integration
                                                                                                                                                                                                                                                                • 5.4.3 Further Applications of Integration
                                                                                                                                                                                                                                                                  • 5.4.4 Volumes of Revolution
                                                                                                                                                                                                                                                                  • 5.5 Kinematics
                                                                                                                                                                                                                                                                    • 5.5.1 Kinematics Toolkit
                                                                                                                                                                                                                                                                      • 5.5.2 Calculus for Kinematics
                                                                                                                                                                                                                                                                      • 5.6 Differential Equations
                                                                                                                                                                                                                                                                        • 5.6.1 Modelling with Differential Equations
                                                                                                                                                                                                                                                                          • 5.6.2 Separation of Variables
                                                                                                                                                                                                                                                                            • 5.6.3 Slope Fields
                                                                                                                                                                                                                                                                              • 5.6.4 Approximate Solutions to Differential Equations
                                                                                                                                                                                                                                                                              • 5.7 Further Differential Equations
                                                                                                                                                                                                                                                                                • 5.7.1 Coupled Differential Equations
                                                                                                                                                                                                                                                                                  • 5.7.2 Second Order Differential Equations


                                                                                                                                                                                                                                                                                  DOWNLOAD PDF

                                                                                                                                                                                                                                                                                Author: Daniel

                                                                                                                                                                                                                                                                                Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.


                                                                                                                                                                                                                                                                                Save My Exams Logo
                                                                                                                                                                                                                                                                                Resources
                                                                                                                                                                                                                                                                                Home Join Support

                                                                                                                                                                                                                                                                                Members
                                                                                                                                                                                                                                                                                Members Home Account Login

                                                                                                                                                                                                                                                                                Company
                                                                                                                                                                                                                                                                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                                                                                                                                Quick Links
                                                                                                                                                                                                                                                                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                                                                                                                                                                                                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.