Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsGeographyHistoryPsychologySociology
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychology
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Other Subjects
CIE English LiteratureBusinessComputer ScienceEconomicsGeographyHistorySociology
Edexcel English LiteratureBusinessComputer ScienceGeographyHistory
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographyPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel IAL English LiteratureGeographyPsychology
CIE IAL History
BiologyChemistryPhysics
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Up to 33% off discounts extended!

Ace your exams with up to 33% off our Annual and Quarterly plans for a limited time only. T&Cs apply.


Ok, hide this.

Edexcel International AS Maths: Pure 1

Revision Notes

Home / International AS / Maths: Pure 1 / Edexcel / Revision Notes / 1. Algebra & Functions / 1.5 Polynomials / 1.5.2 Factorising Expressions


1.5.2 Factorising Expressions


What is meant by factorising expressions?

  • Many expressions in mathematics are written as a sum of terms
    • e.g.  x squared plus 6 x minus 16 is the sum of three the terms x squared, 6 x and negative 16
  • Many expressions are written as a product of factors
    • e.g.  left parenthesis x plus 8 right parenthesis left parenthesis x minus 2 right parenthesis is the product of the two (linear) factors x plus 8 and x minus 2
  • Factorising is the process of rewriting the sum of terms as a product of factors
    • The other way round is expanding

How do I factorise an expression? 

  • This will depend on the nature of the expression you are dealing with
  • In all cases the first thing to consider is if there is a factor (number and/or letter) of all terms in the expression
    • e.g. 2 x cubed plus 4 x squared minus 8 x equals 2 x left parenthesis x squared plus 2 x minus 4 right parenthesis
  • A quadratic expression may be able to be factorised into two linear factors
    • Look out for special cases
      • No constant term: x squared plus 5 x equals x left parenthesis x plus 5 right parenthesis
      • Difference of two squares (no x  term and constant is square): x squared minus 36 equals left parenthesis x minus 6 right parenthesis left parenthesis x plus 6 right parenthesis
      • Perfect squares: x squared plus 8 x plus 16 equals open parentheses x plus 4 close parentheses open parentheses x plus 4 close parentheses equals open parentheses x plus 4 close parentheses squared
      • ‘Hidden’ quadratics: 3 to the power of 2 x end exponent minus 12 cross times 3 to the power of x plus 27 equals open parentheses 3 to the power of x close parentheses squared minus 12 open parentheses 3 to the power of x close parentheses plus 27 equals left parenthesis 3 to the power of x minus 3 right parenthesis left parenthesis 3 to the power of x minus 9 right parenthesis
      • More than one variable: x squared minus y squared equals left parenthesis x minus y right parenthesis left parenthesis x plus y right parenthesis

  • A cubic expression (at this level) will not contain a constant term
    • This means will x be a factor (and there might be a number as a factor too)
    • The remaining expression will be a quadratic
      • this quadratic may also be able to be factorised
      • e.g. 6 x cubed plus 3 x squared minus 9 x equals 3 x open parentheses 2 x squared plus x minus 3 close parentheses equals 3 x open parentheses 2 x plus 3 close parentheses open parentheses x minus 1 close parentheses

Remind me how to factorise a quadratic … 

  • There are many shortcuts to factorise quadratic expressions, but they often only apply under certain conditions (such as when a = 1)
    • the method below works for any quadratic expression
    • it is most useful when the coefficient of the x squared term is greater than 1 (and not prime)
  • Follow the steps:
    • STEP 1 Starting with a x squared plus b x plus c find the product a c
      • For example: for 6 x squared plus 7 x minus 3 a c equals 6 cross times negative 3 equals negative 18
    • STEP 2 Find two numbers m & n whose product is a c and sum is b
      • For example: 9 cross times negative 2 equals negative 18 equals a c & 9 plus left parenthesis negative 2 right parenthesis equals 7 equals b
      • So m equals 9 space & space n equals negative 2
    • STEP 3 Split the b x term into m x plus n x
      • For example: 6 x squared minus 2 x plus 9 x minus 3
    • STEP 4 Factorise the first two terms and the last two terms
      • For example: 2 x open parentheses 3 x minus 1 close parentheses plus 3 open parentheses 3 x minus 1 close parentheses
    • STEP 5 Factorise once more for the final answer
      • For example: left parenthesis 3 x minus 1 right parenthesis left parenthesis 2 x plus 3 right parenthesis 

  • If a and/or c are prime, factorising can be done “by inspection”
    • For example: the only way to split (prime) 3 into factors would be 3 and 1

Why does the 'ac' method work? 

  • Suppose a x squared plus b x plus c identical to open parentheses p x plus r close parentheses open parentheses q x plus s close parentheses
    • then expanding and simplifying gives
      •  a x squared plus b x plus c identical to blank p q x squared plus p s x plus q r x plus r s identical to p q x squared plus open parentheses p s plus q r close parentheses x plus r s

  • By comparing coefficients
    • a equals p q
    • b equals p s plus q r
    • c equals r s
  • Let m equals p s and n equals q r then:
    • m plus n equals p s plus q r equals b
    • m cross times n equals p s q r equals a c
    • Therefore these are the two numbers whose product is ac and sum is b

       
       

Exam Tip

  • Do use your tried and tested shortcuts for factorising quadratics
    • We’ve explained it in full above to help you understand the process rather than to learn ‘tricks’
  • You don't need to learn why the 'ac' method works - but we thought you might think that the algebra is cool


  • 1. Algebra & Functions
    • 1.1 Laws of Indices & Surds
      • 1.1.1 Laws of Indices
        • 1.1.2 Manipulating Surds
          • 1.1.3 Surds - Rationalising the Denominator
          • 1.2 Quadratics
            • 1.2.1 Quadratic Graphs
              • 1.2.2 Discriminants
                • 1.2.3 Completing the square
                  • 1.2.4 Solving Quadratic Equations
                    • 1.2.5 Further Solving Quadratic Equations (Hidden Quadratics)
                    • 1.3 Simultaneous Equations
                      • 1.3.1 Linear Simultaneous Equations - Elimination
                        • 1.3.2 Linear Simultaneous Equations - Substitution
                          • 1.3.3 Quadratic Simultaneous Equations
                          • 1.4 Inequalities
                            • 1.4.1 Linear Inequalities
                              • 1.4.2 Quadratic Inequalities
                                • 1.4.3 Inequalities on Graphs
                                • 1.5 Polynomials
                                  • 1.5.1 Expanding Brackets
                                    • 1.5.2 Factorising Expressions
                                    • 1.6 Graphs of Functions
                                      • 1.6.1 Sketching Polynomials
                                        • 1.6.2 Reciprocal Graphs - Sketching
                                          • 1.6.3 Solving Equations Graphically
                                            • 1.6.4 Proportional Relationships
                                              • 1.6.5 Modelling with Functions
                                              • 1.7 Transformations of Functions
                                                • 1.7.1 Translations
                                                  • 1.7.2 Stretches
                                                    • 1.7.3 Reflections
                                                  • 2. Coordinate Geometry
                                                    • 2.1 Equation of a Straight Line
                                                      • 2.1.1 Basic Coordinate Geometry
                                                        • 2.1.2 Parallel & Perpendicular Gradients
                                                          • 2.1.3 Equation of a Straight Line
                                                            • 2.1.4 Modelling with Straight Lines
                                                          • 3. Trigonometry
                                                            • 3.1 Basic Trigonometry
                                                              • 3.1.1 Trigonometry - Definitions
                                                                • 3.1.2 Right-Angled Triangles
                                                                  • 3.1.3 Non-Right-Angled Triangles
                                                                  • 3.2 Radian Measure
                                                                    • 3.2.1 Radian Measure
                                                                      • 3.2.2 Trigonometry Exact Values
                                                                      • 3.3 Trigonometric Functions
                                                                        • 3.3.1 Graphs of Trigonometric Functions
                                                                          • 3.3.2 Transformations of Trigonometric Functions
                                                                        • 4. Differentiation
                                                                          • 4.1 Differentiation
                                                                            • 4.1.1 Definition of Gradient
                                                                              • 4.1.2 Definition of Derivatives
                                                                                • 4.1.3 Differentiating Powers of x
                                                                                  • 4.1.4 Gradients, Tangents & Normals
                                                                                    • 4.1.5 Second Order Derivatives
                                                                                  • 5. Integration
                                                                                    • 5.1 Integration
                                                                                      • 5.1.1 Fundamental Theorem of Calculus
                                                                                        • 5.1.2 Integrating Powers of x


                                                                                        DOWNLOAD PDF

                                                                                      Author: Paul

                                                                                      Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams – one of the many reasons he is excited to be a member of the SME team.


                                                                                      Save My Exams Logo
                                                                                      Resources
                                                                                      Home Join Support

                                                                                      Members
                                                                                      Members Home Account Login

                                                                                      Company
                                                                                      About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                      Quick Links
                                                                                      GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                       
                                                                                      © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                      IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.