Syllabus Edition

First teaching 2023

First exams 2025

|

Scalars & Vectors (CIE AS Physics)

Revision Note

Test Yourself
Ashika

Author

Ashika

Expertise

Physics Project Lead

What are Scalar & Vector Quantities?

  • A scalar is a quantity which only has a magnitude (size)
  • A vector is a quantity which has both a magnitude and a direction
  • For example, if a person goes on a hike in the woods to a location which is a couple of miles from their starting point
    • As the crow flies, their displacement will only be a few miles but the distance they walk will be much longer

 Displacement analogy

Displacement v distance, downloadable AS & A Level Physics revision notes

Displacement is a vector while distance is a scalar quantity

  • Distance is a scalar quantity because it describes how an object has travelled overall, but not the direction it has travelled in
  • Displacement is a vector quantity because it describes how far an object is from where it started and in what direction
  • There are a number of common scalar and vector quantities

          Scalars and Vectors Table

Scalars Vectors
Distance Displacement
Speed Velocity
Mass Acceleration
Time Force
Energy Momentum
Volume  
Density  
Pressure  
Electric charge  
Temperature  

Exam Tip

Do you have trouble figuring out if a quantity is a vector or a scalar? Just think - can this quantity have a minus sign? For example - can you have negative energy? No. Can you have negative displacement? Yes!

Combining Vectors

  • Vectors are represented by an arrow
    • The arrowhead indicates the direction of the vector
    • The length of the arrow represents the magnitude

  • Vectors can be combined by adding or subtracting them from each other
  • There are two methods that can be used to combine vectors: the triangle method and the parallelogram method
  • To combine vectors using the triangle method:
    • Step 1: link the vectors head-to-tail
    • Step 2: the resultant vector is formed by connecting the tail of the first vector to the head of the second vector

  • To combine vectors using the parallelogram method:
    • Step 1: link the vectors tail-to-tail
    • Step 2: complete the resulting parallelogram
    • Step 3: the resultant vector is the diagonal of the parallelogram

  • When two or more vectors are added together (or one is subtracted from the other), a single vector is formed and is known as the resultant vector

Vector Addition

Vector Addition, downloadable AS & A Level Physics revision notes

Vector Subtraction

Vector Subtraction, downloadable AS & A Level Physics revision notes

Condition for Equilibrium

  • Coplanar forces can be represented by vector triangles
  • In equilibrium, these are closed vector triangles. The vectors, when joined together, form a closed path

Forces in equilibrium

Vector Equilibrium, downloadable AS & A Level Physics revision notes

If three forces acting on an object are in equilibrium; they form a closed triangle

 

Resolving Vectors

  • Two vectors can be represented by a single resultant vector that has the same effect
  • A single resultant vector can be resolved and represented by two vectors, which in combination have the same effect as the original one
  • When a single resultant vector is broken down into its parts, those parts are called components
  • For example, a force vector of magnitude F and an angle of θ to the horizontal is shown below

Resultant vector diagram

Representing Vectors, downloadable AS & A Level Physics revision notes

A resultant vector, F

  • It is possible to resolve this vector into its horizontal and vertical components using trigonometry

Horizontal and vertical vector components

Resolving Vectors, downloadable AS & A Level Physics revision notes

Horizontal and vertical components of F

 

  • For the horizontal component, Fx = Fcosθ
  • For the vertical component, Fy = Fsinθ

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Ashika

Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.