PGFs of Standard Distributions (Edexcel A Level Further Maths: Further Statistics 1)

Revision Note

Mark

Author

Mark

Expertise

Maths

PGFs of Standard Distributions

What are the PGFs of standard distributions?

  • You are given the following PGFs in the Formulae Booklet:
    • Distribution of X straight P open parentheses X equals x close parentheses P.G.F.
      Binomial straight B open parentheses n comma p close parentheses open parentheses table row n row x end table close parentheses p to the power of x open parentheses 1 minus p close parentheses to the power of n minus x end exponent open parentheses 1 minus p plus p t close parentheses to the power of n
      Poisson Po open parentheses lambda close parentheses straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of x over denominator x factorial end fraction straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent
      Geometric Geo open parentheses p close parentheses on 1, 2, ... p open parentheses 1 minus p close parentheses to the power of x minus 1 end exponent fraction numerator p t over denominator 1 minus open parentheses 1 minus p close parentheses t end fraction
      Negative binomial on rr plus 1, ... open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r open parentheses 1 minus p close parentheses to the power of x minus r end exponent open parentheses fraction numerator p t over denominator 1 minus open parentheses 1 minus p close parentheses t end fraction close parentheses to the power of r

How do I find the PGF of a Binomial Distribution?

  • If X tilde straight B open parentheses n comma p close parentheses then straight G subscript X open parentheses t close parentheses equals open parentheses q plus p t close parentheses to the power of n where q equals 1 minus p
    • You can use this to to prove, by differentiation, that
      • straight E open parentheses X close parentheses equals n p
      • Var open parentheses X close parentheses equals n p q
  • To derive the PGF, create a probability distribution table 
    • Using the binomial probability function open parentheses table row n row x end table close parentheses p to the power of x q to the power of n minus x end exponent
    • From x equals 0 to x equals n
    • Showing all powers clearly
    • x 0 1 2 ... n
      P open parentheses X equals x close parentheses open parentheses table row n row 0 end table close parentheses p to the power of 0 q to the power of n open parentheses table row n row 1 end table close parentheses p to the power of 1 q to the power of n minus 1 end exponent open parentheses table row n row 2 end table close parentheses p squared q to the power of n minus 2 end exponent ... open parentheses table row n row n end table close parentheses p to the power of n q to the power of 0
  • Write down the PGF as a polynomial
    • straight G subscript X open parentheses t close parentheses equals open parentheses table row n row 0 end table close parentheses p to the power of 0 q to the power of n t to the power of 0 plus open parentheses table row n row 1 end table close parentheses p to the power of 1 q to the power of n minus 1 end exponent t to the power of 1 plus open parentheses table row n row 2 end table close parentheses p squared q to the power of n minus 2 end exponent t squared plus... plus open parentheses table row n row n end table close parentheses p to the power of n q to the power of 0 t to the power of n
  • Group the p and t together in brackets
    • straight G subscript X open parentheses t close parentheses equals open parentheses table row n row 0 end table close parentheses open parentheses p t close parentheses to the power of 0 q to the power of n plus open parentheses table row n row 1 end table close parentheses open parentheses p t close parentheses to the power of 1 q to the power of n minus 1 end exponent plus open parentheses table row n row 2 end table close parentheses open parentheses p t close parentheses squared q to the power of n minus 2 end exponent plus... plus open parentheses table row n row n end table close parentheses open parentheses p t close parentheses to the power of n q to the power of 0
  • Spot that this is the binomial expansion of open parentheses q plus p t close parentheses to the power of n
    • Since open parentheses a plus b close parentheses to the power of n equals open parentheses table row n row 0 end table close parentheses a to the power of 0 b to the power of n plus open parentheses table row n row 1 end table close parentheses a to the power of 1 b to the power of n minus 1 end exponent plus open parentheses table row n row 2 end table close parentheses a squared b to the power of n minus 2 end exponent plus... plus open parentheses table row n row n end table close parentheses a to the power of n b to the power of 0
    • So straight G subscript X open parentheses t close parentheses equals open parentheses q plus p t close parentheses to the power of n space end exponent
  • The proof can also be done in summation (sigma) notation
    • straight G subscript X open parentheses t close parentheses equals sum from x equals 0 to n of space t to the power of x straight P open parentheses X italic equals x close parentheses equals sum from x equals 0 to n of space t to the power of x open parentheses table row n row x end table close parentheses p to the power of x q to the power of n minus x end exponent equals sum from x equals 0 to n of space open parentheses table row n row x end table close parentheses open parentheses p t close parentheses to the power of x q to the power of n minus x end exponent equals open parentheses q plus p t close parentheses to the power of n

How do I find the PGF of a Poisson Distribution?

  • If X tilde Po open parentheses lambda close parentheses then straight G subscript X open parentheses t close parentheses equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent
    • You can use this to to prove, by differentiation, that
      • straight E open parentheses X close parentheses equals lambda
      • Var open parentheses X close parentheses equals lambda
  • To derive the PGF, create a probability distribution table 
    • Using the Poisson probability function straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of x over denominator x factorial end fraction
    • From x equals 0x to infinity
    • Showing all powers clearly
    • x 0 1 2 3 ...
      P open parentheses X equals x close parentheses straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 0 over denominator 0 factorial end fraction straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 1 over denominator 1 factorial end fraction straight e to the power of negative lambda end exponent space fraction numerator lambda squared over denominator 2 factorial end fraction straight e to the power of negative lambda end exponent space fraction numerator lambda cubed over denominator 3 factorial end fraction ...
  • Write down the PGF as a polynomial
    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 0 over denominator 0 factorial end fraction t to the power of 0 plus straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of 1 over denominator 1 factorial end fraction t to the power of 1 plus straight e to the power of negative lambda end exponent space fraction numerator lambda squared over denominator 2 factorial end fraction t squared plus straight e to the power of negative lambda end exponent space fraction numerator lambda cubed over denominator 3 factorial end fraction t cubed plus...
  • Group the lambda and t together in brackets
    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses to the power of 0 over denominator 0 factorial end fraction plus straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses to the power of 1 over denominator 1 factorial end fraction plus straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses squared over denominator 2 factorial end fraction plus straight e to the power of negative lambda end exponent space fraction numerator open parentheses lambda t close parentheses cubed over denominator 3 factorial end fraction plus...
  • Factorise out straight e to the power of negative lambda end exponent
    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent space open square brackets fraction numerator open parentheses lambda t close parentheses to the power of 0 over denominator 0 factorial end fraction plus fraction numerator open parentheses lambda t close parentheses to the power of 1 over denominator 1 factorial end fraction plus fraction numerator open parentheses lambda t close parentheses squared over denominator 2 factorial end fraction plus fraction numerator open parentheses lambda t close parentheses cubed over denominator 3 factorial end fraction plus... close square brackets
  • Spot that the Maclaurin series of straight e to the power of lambda t end exponent is inside the brackets
    • Since straight e to the power of x equals 1 plus x plus fraction numerator x squared over denominator 2 factorial end fraction plus fraction numerator x cubed over denominator 3 factorial end fraction plus...
    • So straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent straight e to the power of lambda t end exponent
  • Add the powers then factorise out lambda
    • straight G subscript X open parentheses t close parentheses equals straight e to the power of negative lambda end exponent to the power of plus lambda t end exponent equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent
  • The proof can also be done in summation (sigma) notation
    • straight G subscript X open parentheses t close parentheses equals sum from x equals 0 to infinity of space t to the power of x straight P open parentheses X italic equals x close parentheses equals sum from x equals 0 to infinity of space t to the power of x straight e to the power of negative lambda end exponent space fraction numerator lambda to the power of x over denominator x factorial end fraction equals straight e to the power of negative lambda end exponent sum from x equals 0 to infinity of space space fraction numerator open parentheses lambda t close parentheses to the power of x over denominator x factorial end fraction equals straight e to the power of negative lambda end exponent to the power of plus lambda t end exponent equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent

How do I find the PGF of a Geometric Distribution?

  • If X tilde Geo open parentheses p close parentheses then straight G subscript X open parentheses t close parentheses equals fraction numerator p t over denominator 1 minus q t end fraction where q equals 1 minus p
    • You can use this to to prove, by differentiation, that
      • straight E open parentheses X close parentheses equals 1 over p
      • Var open parentheses X close parentheses equals q over p squared
  • To derive the PGF, create a probability distribution table 
    • Using the Geometric probability function p q to the power of x minus 1 end exponent
    • From x equals 1 to infinity (x not equal to 0)
    • Simplify the powers 
    • x 1 2 3 4 ...
      P open parentheses X equals x close parentheses p p q p q squared p q cubed ...
  • Write down the PGF as a polynomial
    • straight G subscript X open parentheses t close parentheses equals p t to the power of 1 plus p q t squared plus p q squared t cubed plus p q cubed t to the power of 4 plus...
  • Spot that this is an infinite geometric series with first term p t and common ratio q t
    • Use S subscript infinity equals fraction numerator a over denominator 1 minus r end fraction
    • So straight G subscript X open parentheses t close parentheses equals fraction numerator p t over denominator 1 minus q t end fraction

How do I find the PGF of a Negative Binomial Distribution?

  • If X tilde Negative space straight B open parentheses r comma p close parentheses then straight G subscript X open parentheses t close parentheses equals open parentheses fraction numerator p t over denominator 1 minus q t end fraction close parentheses to the power of r where q equals 1 minus p
    • You can use this to to prove, by differentiation, that
      • straight E open parentheses X close parentheses equals r over p
      • Var open parentheses X close parentheses equals fraction numerator r q over denominator p squared end fraction
  • To derive the PGF, the proof is best done in summation (sigma) notation 
    • Use the negative binomial probability function open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent
      • From x equals r to infinity
    • straight G subscript X open parentheses t close parentheses equals sum from x equals r to infinity of space t to the power of x straight P open parentheses X italic equals x close parentheses equals sum from x equals r to infinity of space t to the power of x open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent equals sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent t to the power of x
  • To proceed, you will be given in the question the result that sum from x equals r to infinity of open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses a to the power of x minus r end exponent equals open parentheses 1 minus a close parentheses to the power of negative r end exponent
    • Write t to the power of x as t to the power of x minus r end exponent t to the power of r to group q and t together in brackets
      • straight G subscript X open parentheses t close parentheses equals sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses p to the power of r q to the power of x minus r end exponent t to the power of x minus r end exponent t to the power of r equals sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses open parentheses q t close parentheses to the power of x minus r end exponent p to the power of r t to the power of r
    • Factorise p to the power of r t to the power of r out (as it does not depend on x)
      • straight G subscript X open parentheses t close parentheses equals p to the power of r t to the power of r sum from x equals r to infinity of space open parentheses table row cell x minus 1 end cell row cell r minus 1 end cell end table close parentheses open parentheses q t close parentheses to the power of x minus r end exponent
    • Use the result given, where a equals q t
      • straight G subscript X open parentheses t close parentheses equals p to the power of r t to the power of r open parentheses 1 minus q t close parentheses to the power of negative r end exponent
    • Write as one bracket to the power r
      • straight G subscript X open parentheses t close parentheses equals open parentheses fraction numerator p t over denominator 1 minus q t end fraction close parentheses to the power of r

Exam Tip

  • The words derive or from first principles mean you have to prove the PGF (not quote it)

Worked example

Write down the probability generating function for the distribution X tilde Geo open parentheses p close parentheses and use it to prove that Var open parentheses X close parentheses equals fraction numerator 1 minus p over denominator p squared end fraction.

pgfs-of-standard-distributions-1pgfs-of-standard-distributions-2

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark

Author: Mark

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.