Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Past Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic Questions
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

CIE A Level Maths: Probability & Statistics 1

Revision Notes

Home / A Level / Maths: Probability & Statistics 1 / CIE / Revision Notes / 2. Probability / 2.2 Permutations & Combinations / 2.2.2 Permutations


2.2.2 Permutations


Permutations

Are permutations and arrangements the same thing?

  • Mathematically speaking yes, a permutation is the number of possible arrangements of a set of objects when the order of the arrangements matters
  • A permutation can either be finding the number of ways to arrange n  items or finding the number of ways to arrange r  out of n items
  • By the reasoning given in the 2.2.1 Arrangements revision note, the number of permutations of n different items is begin mathsize 16px style n factorial equals n cross times open parentheses n minus 1 close parentheses cross times open parentheses n minus 2 close parentheses cross times... cross times 2 cross times 1 end style
    • For 5 different items there are 5! = 5 × 4 × 3 × 2 = 120 permutations
    • For 6 different items there are 6! = 6 × 5 × 4 × 3 × 2 = 720  permutations
    • It is easy to see how quickly the number of possible permutations of different items can increase
    • For 10 different items there are 10! = 3 628 800 possible permutations

How do we handle permutations if there are repeated items?

  • Again, by the reasoning given in the 2.2.1 Arrangements revision note, the number of permutations of n different items, with one of the items repeated r times, is

begin mathsize 16px style fraction numerator n factorial over denominator r factorial end fraction equals n cross times open parentheses n minus 1 right parenthesis close parentheses cross times... cross times open parentheses r plus 1 close parentheses end style

  • The number of permutations of n different items, with one of the items repeated r times and another repeated s times, is begin mathsize 16px style fraction numerator n factorial over denominator r factorial s factorial end fraction end style
  • This property will need to be applied to any permutation problem with one or more item(s) repeated a number of times

How do we find r  permutations of n items?

  • If we only want to find the number of ways to arrange a few out of n  different objects, we should consider how many of the objects can go in the first position, how many can go in the second and so on
  • If we wanted to arrange 3 out of 5 different objects, then we would have 3 positions to place the objects in, but we would have 5 options for the first position, 4 for the second and 3 for the third
    • This would be 5 × 4 × 3 ways of permutating 3 out of 5 different objects
    • This is equivalent to begin mathsize 16px style fraction numerator 5 factorial over denominator 2 factorial end fraction equals fraction numerator 5 factorial over denominator open parentheses 5 minus 3 close parentheses factorial end fraction end style
  • If we wanted to arrange 4 out of 10 different objects, then we would have 4 positions to place the objects in, but we would have 10 options for the first position, 9 for the second, 8 for the third and 7 for the fourth
    • This would be 10 × 9 × 8 × 7 ways of permutating 4 out of 10 different objects
    • This is equivalent to begin mathsize 16px style fraction numerator 10 factorial over denominator 6 factorial end fraction equals fraction numerator 10 factorial over denominator left parenthesis 10 minus 4 right parenthesis factorial end fraction end style
  • If we wanted to arrange r out of n different objects, then we would have r positions to place the objects in, but we would have n options for the first position, begin mathsize 16px style open parentheses n minus 1 close parentheses end style for the second, begin mathsize 16px style open parentheses n minus 2 close parentheses end style for the third and so on until we reach begin mathsize 16px style open parentheses n minus open parentheses r minus 1 close parentheses close parentheses end style
    • This would be begin mathsize 16px style n cross times open parentheses n minus 1 close parentheses cross times... cross times open parentheses n minus r plus 1 close parentheses end style ways of permutating r out of n different objects
    • This is equivalent to begin mathsize 16px style fraction numerator n factorial over denominator open parentheses n minus r close parentheses factorial end fraction end style
  • The function fraction numerator size 16px n size 16px factorial over denominator begin mathsize 16px style stretchy left parenthesis n minus r stretchy right parenthesis factorial end style end fractioncan be written as begin mathsize 16px style straight P presuperscript n subscript r end style
    • Make sure you can find and use this button on your calculator
  • The same function works if we have n spaces into which we want to arrange r objects, consider
    • for example arranging five people into a row of ten empty chairs

Permutations when two or more items must be together

  • If two or more items must stay together within an arrangement, it is easiest to think of these items as ‘stuck’ together
  • These items will become one within the arrangement
  • Arrange this ‘one’ item with the others as normal
  • Arrange the items within this ‘one’ item separately
  • Multiply these two arrangements together

2-2-2-diagram-1

Permutations when two or more items cannot be all together

  • If two items must be separated …
    • consider the number of ways these two items would be together
    • subtract this from the total number of arrangements without restrictions
  • If more than two items must be separated…
    • consider whether all of them must be completely separate (none can be next to each other) or whether they cannot all be together (but two could still be next to each other)
    • If they cannot all be together then we can treat it the same way as separating two items and subtract the number of ways they would all be together from the total number of permutations of the items, the final answer will include all permutations where two items are still together

2-2-2-diagram-2

Permutations when two or more items must be separated

    • If the items must all be completely separate then
      • lay out the rest of the items in a line with a space in between each of them where one of the items which cannot be together could go
      • remember that this could also include the space before the first and after the last item
      • You would then be able to fit the items which cannot be together into any of these spaces, using the r permutations of n items rule left parenthesis scriptbase straight P subscript r end scriptbase presubscript blank presuperscript n right parenthesis
      • You do not need to fill every space

2-2-2-diagram-3

Permutations when two or more items must be in specific places

  • Most commonly this would be arranging a word where specific letters would go in the first and last place
  • Or arranging objects where specific items have to be at the ends/in the middle
    • Imagine these specific items are stuck in place, then you can find the number of ways to arrange the rest of the items around these ‘stuck’ items
  • Sometimes the items must be grouped
    • For example all vowels must be before the consonants
    • Or all the red objects must be on one side and the blue objects must be on the other
    • Find the number of permutations within each group separately and multiply them together
    • Be careful to check whether the groups could be in either place
      • e.g. the vowels on one side and consonants on the other
      • or if they must be in specific places (the vowels before the consonants)
    • If the groups could be in either place than your answer would be multiplied by two
    • If there were n groups that could be in any order then you’re answer would be multiplied by n!

Worked Example

(a)
How many ways are there to rearrange the letters in the word BANANAS if the B and the S must be at each end?

 

(b)
How many ways are there to rearrange the letters in the word ORANGES if

 

(i)
the three vowels (A, E and O) must be together?

 

(ii)
the three vowels must NOT all be together?

 

(iii)
the three vowels must all be separated?
(a)
How many ways are there to rearrange the letters in the word BANANAS if the B and the S must be at each end?

2-2-2-we-solution-part-a

(b)
How many ways are there to rearrange the letters in the word ORANGES if 
(i)
the three vowels (A, E and O) must be together? 
(ii)
the three vowels must NOT all be together? 
(iii)
the three vowels must all be separated?

2-2-2-we-solution-part-b

Exam Tip

  • The wording is very important in permutations questions, just one word can change how you answer the question.
  • Look out for specific details such as whether three items must all be separated or just cannot be all together (there is a difference).
  • Pay attention to whether items must be in alternating order (e.g. red and blue items must alternate, either RBRB… or BRBR…) or whether a particular item must come first (red then blue and so on).
  • If items should be at the ends, look out for whether they can be at either end or whether one must be at the beginning and the other at the end.


  • 1. Data Presentation & Interpretation
    • 1.1 Statistical Measures
      • 1.1.1 Basic Statistical Measures
        • 1.1.2 Frequency Tables
          • 1.1.3 Standard Deviation & Variance
            • 1.1.4 Coding
            • 1.2 Representation of Data
              • 1.2.1 Data Presentation
                • 1.2.2 Stem and Leaf Diagrams
                  • 1.2.3 Box Plots & Cumulative Frequency
                    • 1.2.4 Histograms
                    • 1.3 Working with Data
                      • 1.3.1 Interpreting Data
                        • 1.3.2 Skewness
                      • 2. Probability
                        • 2.1 Basic Probability
                          • 2.1.1 Calculating Probabilities & Events
                            • 2.1.2 Venn Diagrams
                              • 2.1.3 Tree Diagrams
                              • 2.2 Permutations & Combinations
                                • 2.2.1 Arrangements & Factorials
                                  • 2.2.2 Permutations
                                    • 2.2.3 Combinations
                                    • 2.3 Further Probability
                                      • 2.3.1 Set Notation & Conditional Probability
                                        • 2.3.2 Further Tree Diagrams
                                          • 2.3.3 Further Venn Diagrams
                                            • 2.3.4 Probability Formulae
                                          • 3. Statistical Distributions
                                            • 3.1 Probability Distributions
                                              • 3.1.1 Discrete Probability Distributions
                                                • 3.1.2 E(X) & Var(X) (Discrete)
                                                • 3.2 Binomial & Geometric Distribution
                                                  • 3.2.1 The Binomial Distribution
                                                    • 3.2.2 Calculating Binomial Probabilities
                                                      • 3.2.3 The Geometric Distribution
                                                      • 3.3 Normal Distribution
                                                        • 3.3.1 The Normal Distribution
                                                          • 3.3.2 Standard Normal Distribution
                                                            • 3.3.3 Normal Distribution - Calculations
                                                              • 3.3.4 Finding Sigma and Mu
                                                              • 3.4 Working with Distributions
                                                                • 3.4.1 Modelling with Distributions
                                                                  • 3.4.2 Normal Approximation of Binomial


                                                                  DOWNLOAD PDF

                                                                Author: Amber

                                                                Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.


                                                                Save My Exams Logo
                                                                Resources
                                                                Home Join Support

                                                                Members
                                                                Members Home Account Login

                                                                Company
                                                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                Quick Links
                                                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                 
                                                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.