Centre Number Candidate Number Name

# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

BIOLOGY 9700/04

Paper 4 Structured Questions A2 Core

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Answer Paper should be available on request.

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces provided at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** questions in Section A and **one** question from Section B. Circle the number of the Section B question you have answered in the grid below.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam  | iner's Use |
|-----------|------------|
| 1         |            |
| 2         |            |
| 3         |            |
| 4         |            |
| 5         |            |
| Section A |            |
| 6 or 7    |            |
| Total     |            |

#### Section A

## Answer all questions.

Write your answers in the spaces provided.

1 Fig. 1.1 shows the Krebs cycle and the reactions preceding it.



Fig. 1.1

(a) State precisely where the Krebs cycle occurs in cells.

.....[1]

(b) Label on Fig. 1.1 all the stages where

(i) decarboxylation reactions occur with a letter **X**. [2]

(ii) dehydrogenation reactions occur with a letter **H**. [2]

| (c) | Explain how NAD is regenerated.                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                   |
|     |                                                                                                                   |
|     |                                                                                                                   |
|     | [3]                                                                                                               |
| (d) | State how the formation of ATP in the Krebs cycle differs from the formation of ATP in oxidative phosphorylation. |
|     |                                                                                                                   |
|     | [1]                                                                                                               |
|     | [Total : 9]                                                                                                       |

[4]

- **2** A maize plant produced a total of 381 grains, 216 purple and smooth, 79 purple and shrunken, 65 yellow and smooth and 21 yellow and shrunken.
  - (a) Using the symbols **A** for purple and **a** for yellow and **B** for smooth and **b** for shrunken, draw a genetic diagram to explain these results.

| (b) | Explain why yellow shrunken grains breed true. |
|-----|------------------------------------------------|
|     |                                                |
|     | [2]                                            |

A chi-squared test was carried out to test the significance of the differences between the observed and expected results.

Table 2.1

| grain<br>phenotype     | observed<br>number | observed ratio | expected ratio | expected<br>number  | [obs no. – exp no.] <sup>2</sup><br>÷ expected no. |
|------------------------|--------------------|----------------|----------------|---------------------|----------------------------------------------------|
| purple and smooth      | 216                | 10.3           | 9              | 381 × 9/16 = 214    | 4/214 = 0.019                                      |
| purple and shrunken    | 79                 | 3.8            | 3              | 381 × 3/16 = 71     | 64/71 = 0.901                                      |
| yellow and smooth      | 65                 | 3.1            | 3              |                     |                                                    |
| yellow and<br>shrunken | 21                 | 1.0            | 1              |                     |                                                    |
| total<br>number        | 381                |                |                | chi square<br>value |                                                    |

(c) Complete the missing spaces in the Table 2.1

[3]

Table 2.2

|                    | probability greater than |      |      |      |      |       |       |
|--------------------|--------------------------|------|------|------|------|-------|-------|
| degrees of freedom | 0.50                     | 0.20 | 0.10 | 0.05 | 0.02 | 0.01  | 0.001 |
| 3                  | 2.37                     | 4.64 | 6.25 | 7.82 | 9.84 | 11.34 | 16.27 |

| probability of the observed ratio of phenotypes differing significantly from the expected. |
|--------------------------------------------------------------------------------------------|
| [1]                                                                                        |
| State what conclusions may be drawn from the probability found in (d).                     |
|                                                                                            |
|                                                                                            |
| [2]                                                                                        |
|                                                                                            |

[Total : 12]

| 3 | (a) | Stat  | e what is meant by the term <i>respiratory quotient</i> (RQ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |       | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (b) | (i)   | Complete the following equation for the aerobic respiration of the respiratory substrate A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |     |       | C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> + 26O <sub>2</sub> + [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |     | (ii)  | Calculate the respiratory quotient (RQ) of this respiratory substrate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |       | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |     | (iii) | Identify respiratory substrate A from the respiratory quotient value calculated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |     | (,    | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (c) | Exp   | lain why carbohydrates release half as much energy per unit mass as fats and oils.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | (-, |       | and the second control of the second control |
|   |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |       | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |     |       | [Total : 8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

- There are over 40 Galapagos Islands including the small and isolated island named Daphne Major.
  - Only two species of Darwin finches are found on this island.
  - Studies were made every year from 1970 to 1989 on the beak size of the island's population of ground finch, *Geospiza fortis*, by measuring the beak length of every bird (Fig. 4.1). Larger finches with larger beaks are better at opening large seeds. From 1976 to 1978 there was a drought and only 15% of the ground finches survived and these did not breed during drought years.



Fig. 4.1

- All finches were reduced in number. The most conspicuous feature of the survivors of the drought years was their large beak size.
- The main environmental consequences of drought is the decline in food supply, mainly seeds. During normal years, many grasses and herbs produce an abundance of small seeds. A few other plants produce a much smaller number of large seeds which are not normally eaten.

| (a)  | beak size of finches as an evolutionary force of natural selection.                                    |
|------|--------------------------------------------------------------------------------------------------------|
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
|      | [3]                                                                                                    |
| Find | ches with small beaks were found to be smaller than finches with larger beaks.                         |
| (b)  | Explain the stabilizing force of natural selection on the beak size and size of birds in normal years. |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |

| (c) | Outline the mechanisms that may have let natural selection lead to the evolution of the thirteen species of Darwin finches now found on the Galapagos Islands. |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                |
|     | [2]                                                                                                                                                            |
|     | [Total : 8]                                                                                                                                                    |

5 Fig. 5.1 outlines the way in which the gene for human insulin is incorporated into plasmid DNA and inserted into a bacterium.



Fig. 5.1

| (a) | Describe how the plasmid DNA is cut.                                                                 |
|-----|------------------------------------------------------------------------------------------------------|
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     | [3]                                                                                                  |
| (b) | Explain how the human insulin gene is joined to the plasmid DNA.                                     |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     | [3]                                                                                                  |
| (c) | List <b>two</b> advantages of treating diabetics with human insulin produced by genetic engineering. |
|     | 1                                                                                                    |
|     |                                                                                                      |
|     | 2                                                                                                    |
|     | [2]                                                                                                  |
|     | [Total : 8]                                                                                          |

### **Section B**

Answer only **one** question from this section.

In this section, answers should be illustrated by large, clearly labelled diagrams wherever possible.

Your answer to Section B must be in continuous prose, where appropriate.

Your answer must be set out in sections (a) and (b), as indicated in the question.

| 6 | (a) | Describe how the structure of a dicotyledonous leaf is related to its functions in photosynthesis.                              |  |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------|--|
|   | (b) | Discuss the effects that variations in carbon dioxide concentration and light intensity have on the rate of photosynthesis. [8] |  |
| 7 | (a) | Describe how nitrogenous waste products are formed and explain why they need to be removed from the body. [6]                   |  |
|   | (b) | Describe how the kidney removes metabolic wastes from the body. [9]                                                             |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |
|   |     |                                                                                                                                 |  |