Composite & Inverse Functions (Edexcel IGCSE Maths)

Revision Note

Test Yourself
Mark

Author

Mark

Expertise

Maths

Composite Functions

What is a composite function?

  • A composite function is one function applied to the output of another function
  • Composite functions may also be referred to as compound functions

What do composite functions look like?

  • The notation you will see for a composite function is fg(x)
    • This can be written as f(g(x)) and means “f applied to the output of g(x)” 
    • i.e. g(x) happens first
  • Always apply the function on the outside to the output of the function on the inside
    • gf(x) means g(f(x)) and means “g applied to the output of f(x)” 
    • i.e. f(x) happens first

How does a composite function work?

  • If you are putting a number into fg(x)
    • STEP 1
      Put the number into g(x)
    • STEP 2
      Put the output of g(x) into f(x)
    • For example, if space straight f left parenthesis x right parenthesis space equals space 2 x space plus space 1 spaceand straight g left parenthesis x right parenthesis space equals space 1 over x
      • fg left parenthesis 2 right parenthesis space equals space straight f left parenthesis 1 half right parenthesis space equals 2 space cross times space 1 half space plus space 1 space equals space 2
      • gf left parenthesis 2 right parenthesis space equals space straight g left parenthesis 2 space cross times space 2 space plus space 1 right parenthesis space equals space straight g left parenthesis 5 right parenthesis space equals space 1 fifth
  • If you are using algebra, to find an expression for a composite function
    • STEP 1
      For fg(x) put g(x) wherever you see x in f(x)
    • STEP 2
      Simplify if necessary
    • For example, if straight f left parenthesis x right parenthesis space equals space 2 x space plus space 1 and straight g left parenthesis x right parenthesis space equals space 1 over x
      • fg left parenthesis x right parenthesis space equals space straight f left parenthesis 1 over x right parenthesis space equals space 2 space cross times space 1 over x space plus space 1 space equals space fraction numerator 2 space over denominator x end fraction plus space 1
      • gf left parenthesis x right parenthesis space equals space straight g left parenthesis 2 x space plus space 1 right parenthesis space equals space fraction numerator 1 over denominator 2 x space plus space 1 end fraction

Exam Tip

  • Make sure you are applying the functions in the correct order
    • The letter nearest the bracket is the function applied first

Worked example

In this question, straight f open parentheses x close parentheses space equals space 2 x space minus space 1 and straight g open parentheses x close parentheses space equals space open parentheses x space plus space 2 close parentheses squared.

(a)
Find  fg open parentheses 4 close parentheses.
 
g is on the inside of the composite function so apply g first. 
 
fg stretchy left parenthesis 4 stretchy right parenthesis space equals space straight f open parentheses straight g open parentheses 4 close parentheses close parentheses space equals space straight f open parentheses open parentheses 4 space plus space 2 close parentheses squared close parentheses space equals space straight f open parentheses 6 squared close parentheses space equals space straight f open parentheses 36 close parentheses
 
Apply f to the output of g.
 
table row cell space straight f open parentheses 36 close parentheses space end cell equals cell space 2 open parentheses 36 close parentheses space minus space 1 end cell row blank equals cell space 72 space minus space 1 end cell end table
  
bold fg bold left parenthesis bold 4 bold right parenthesis bold space bold equals bold space bold 71
(b)
Find  g straight f open parentheses x close parentheses.
 
f is on the inside of the composite function so apply f first by substituting the function f(x) into g(x).
 
g straight f stretchy left parenthesis x stretchy right parenthesis space equals space g open parentheses straight f open parentheses x close parentheses close parentheses space equals space g open parentheses 2 x space minus space 1 close parentheses space equals space open parentheses open parentheses 2 x space minus space 1 close parentheses space plus space 2 close parentheses squared
 
Simplify.
 
table attributes columnalign right center left columnspacing 0px end attributes row cell g straight f open parentheses x close parentheses space end cell equals cell space open parentheses 2 x space minus space 1 space plus space 2 close parentheses squared end cell end table
  
bold gf bold left parenthesis bold italic x bold right parenthesis bold space bold equals bold space bold left parenthesis bold 2 bold italic x bold space bold plus bold space bold 1 bold right parenthesis to the power of bold 2

Inverse Functions

What is an inverse function?

  • An inverse function does the exact opposite of the function it came from
    • For example, if the function “doubles the number and adds 1” then its inverse is
    • “subtract 1 and halve the result”
  • It is the inverse operations in the reverse order

How do I write inverse functions?

  • An inverse function f-1 can be written as space straight f to the power of negative 1 end exponent left parenthesis x right parenthesis space equals space horizontal ellipsis space space or  straight f to the power of negative 1 end exponent space colon space x space rightwards arrow from bar space horizontal ellipsis
    • For example, if straight f left parenthesis x right parenthesis space equals space 2 x space plus space 1 its inverse can be written as
    • straight f to the power of negative 1 end exponent left parenthesis x right parenthesis space equals space fraction numerator left parenthesis x space – space 1 right parenthesis space over denominator 2 end fraction  or   straight f to the power of negative 1 end exponent colon space x space rightwards arrow from bar space fraction numerator left parenthesis x space – space 1 right parenthesis over denominator 2 end fraction

How do I find an inverse function?

  • The easiest way to find an inverse function is to 'cheat' and swap the x and y variables
    • Note that this is a useful method but you MUST remember not to do this in any other circumstances in maths
    • STEP 1
      Write the function in the formspace y space equals space horizontal ellipsis
    • STEP 2
      Swap the xs and space ys to get x space equals space horizontal ellipsis
    • STEP 3
      Rearrange the expression to make y the subject again
    • STEP 4
      Write as f-1(x) = … (or f-1 : x ↦ …)
      • y should not exist in the final answer
  • For example, if straight f left parenthesis x right parenthesis equals 2 x plus 1 its inverse can be found as follows 
    • STEP 1
      Write the function in the form y space equals space 2 x space plus space 1
    • STEP 2
      Swap the x and y to get x space equals space 2 y space plus space 1
    • STEP 3
      Rearrange the expression to make y the subject again

table attributes columnalign right center left columnspacing 0px end attributes row cell x space minus space 1 space end cell equals cell space 2 y end cell row cell fraction numerator x space minus space 1 over denominator 2 end fraction space end cell equals cell space y space space space space space space rightwards arrow space space space y space equals space fraction numerator x space minus space 1 over denominator 2 end fraction end cell end table

    • STEP 4
      Rewrite using the correct notation for an inverse function
      • straight f to the power of negative 1 end exponent open parentheses x close parentheses space equals space fraction numerator space x italic space minus space 1 over denominator 2 end fraction

How does a function relate to its inverse?

  • If straight f open parentheses 3 close parentheses equals 10 then the input of 3 gives an output of 10
    • The inverse function undoes f(x)
    • An input of 10 into the inverse function gives an output of 3
      • If f open parentheses 3 close parentheses equals 10 then straight f to the power of negative 1 end exponent open parentheses 10 close parentheses equals 3
  • ff to the power of negative 1 end exponent open parentheses x close parentheses equals straight f to the power of negative 1 end exponent straight f open parentheses x close parentheses equals x
    • If you apply a function to x, then immediately apply its inverse function, you get x
      • Whatever happened to x gets undone
    • f and f-1 cancel each other out when applied together
  • If straight f open parentheses x close parentheses space equals space 2 to the power of x and you want to solve straight f to the power of negative 1 end exponent open parentheses x close parentheses space equals space 5
    • Finding the inverse function straight f to the power of negative 1 end exponent open parentheses x close parentheses in this case is tricky (impossible if you haven't studied logarithms)
    • instead, take f of both sides and use that ff to the power of negative 1 end exponent cancel each other out:

table attributes columnalign right center left columnspacing 0px end attributes row cell ff to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell straight f open parentheses 5 close parentheses end cell row x equals cell straight f open parentheses 5 close parentheses end cell row x equals cell 2 to the power of 5 equals 32 end cell end table

How can I use completing the square to find inverse functions?

  • Finding the inverse of a quadratic function requires completing the square
    • For example, find the inverse of f(x) = x2 + 6x - 10
      • Let y = x2 + 6x - 10
      • Swap the letters: xy2 + 6y - 10
      • It's very hard to make y the subject, so complete the square: x = (y + 3)2 - 19
      • Now rearrange for y and continue: y equals negative 3 plus-or-minus square root of x plus 19 end root space etc

How do I find the domain and range of an inverse function?

  • The domain and range of a function both swap around for its inverse function
    • The domain of a function f(x) is the range of its inverse function f-1(x)
    • The range of a function f(x) is the domain of its inverse function f-1(x)
    • Often the hardest bit is writing down the correct notation!
  • For example, if f(x) = x + 4 with a domain of 0 < x < 10
    • then the range of f-1(x) is 0 < f-1(x) < 10 
      • remember all ranges are written in function notation, in this case f-1(x)
  • For example, if f(x) = x + 4 has a range of f(x) is 4 < f(x) < 14
    • then the domain f-1(x) is 4 < x < 14 
      • remember all domains are written in terms of x (even for inverse functions)

Worked example

Find the inverse of the function straight f open parentheses x close parentheses space equals space 5 space minus space 3 x.

  

Write the function in the form y space equals space 5 space minus space 3 x and then swap the x and y.
 

y space equals space 5 space minus space 3 x
x space equals space 5 space minus space 3 y
  

Rearrange the expression to make y the subject again.
  

table attributes columnalign right center left columnspacing 0px end attributes row cell x space end cell equals cell space 5 space minus space 3 y end cell row cell space x space plus space 3 y space end cell equals cell space 5 end cell row cell 3 y space end cell equals cell space 5 space minus space x end cell row cell y space end cell equals cell space fraction numerator 5 space minus space x over denominator 3 end fraction end cell end table

 
Rewrite using the correct notation for an inverse function.

Error converting from MathML to accessible text.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark

Author: Mark

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.