CIE A Level Physics (9702) 2019-2021

Revision Notes

28.1.4 Nuclear Fusion & Fission

Nuclear Fusion & Fission

Nuclear Fusion

  • Fusion is defined as:

The fusing together of two small nuclei to produce a larger nucleus

  • Low mass nuclei (such as hydrogen and helium) can undergo fusion and release energy
  • For two nuclei to fuse, both nuclei must have high kinetic energy
    • This is because the protons inside the nuclei are positively charged, which means that they repel one another
  • It takes a great deal of energy to overcome the electrostatic force, so this is why it is can only be achieved in an extremely high-energy environment, such as star’s core
  • When two protons fuse, the element deuterium is produced
  • In the centre of stars, the deuterium combines with a tritium  nucleus to form a helium nucleus, plus the release of energy, which provides fuel for the star to continue burning

Nuclear Fission

  • Fission is defined as:

The splitting of a large atomic nucleus into smaller nuclei

  • High mass nuclei (such as uranium) can undergo fission and release energy
  • Fission must first be induced by firing neutrons at a nucleus
  • When the nucleus is struck by a neutron, it splits into two, or more, daughter nuclei
  • During fission, neutrons are ejected from the nucleus, which in turn, can collide with other nuclei which triggers a cascade effect
  • This leads to a chain reaction which lasts until all of the material has undergone fission, or the reaction is halted by a moderator
  • Nuclear fission is the process which produces energy in nuclear power stations, where it is well controlled
  • When nuclear fission is not controlled, the chain reaction can cascade to produce the effects of a nuclear bomb

Exam Tip

When an atom undergoes nuclear fission, take note that extra neutrons are ejected by the nucleus and not from the fission products

Significance of Binding Energy per Nucleon

  • At low values of A:
    • Attractive nuclear forces between nucleons dominate over repulsive electrostatic forces between protons
    • In the right conditions, nuclei undergo fusion
  • In fusion, the mass of the nucleus that is created is slightly less than the total mass of the original nuclei
    • The mass defect is equal to the binding energy that is released, since the nucleus that is formed is more stable
  • At high values of A:
    • Repulsive electrostatic forces between forces begin to dominate, and these forces tend to break apart the nucleus rather than hold it together
    • In the right conditions, nuclei undergo fission
  • In fission, an unstable nucleus is converted into more stable nuclei with a smaller total mass
    • This difference in mass, the mass defect, is equal to the binding energy that is released

Author: Katie

Katie has always been passionate about the sciences, and completed a degree in Astrophysics at Sheffield University. She decided that she wanted to inspire other young people, so moved to Bristol to complete a PGCE in Secondary Science. She particularly loves creating fun and absorbing materials to help students achieve their exam potential.
Close

Join Save My Exams

Download all our Revision Notes as PDFs

Try a Free Sample of our revision notes as a printable PDF.

Join Now
Go to Top