OCR A Level Biology

Revision Notes

2.1.1 Studying Cells

Test Yourself

Use of Microscopy

  • Microscopes can be used to analyse cell components and observe organelles
  • Magnification and resolution are two scientific terms that are very important to understand and distinguish between when answering questions about microscopy (the use of microscopes):
    • Magnification tells you how many times bigger the image produced by the microscope is than the real-life object you are viewing
    • Resolution is the ability to distinguish between objects that are close together (i.e. the ability to see two structures that are very close together as two separate structures)

  • There are different types of microscopes:
    • Optical microscopes (sometimes known as light microscopes)
    • Electron microscopes
    • Laser scanning confocal microscopes

Optical (light) microscopes

  • Optical microscopes use light to form an image
  • This limits the resolution of optical microscopes
    • Using light, it is impossible to resolve (distinguish between) two objects that are closer than half the wavelength of light
    • The wavelength of visible light is between 500-650 nanometres (nm), so an optical microscope cannot be used to distinguish between objects closer than half of this value

  • Optical microscopes have a maximum resolution of around 0.2 micrometres (µm) or 200 nm
    • Therefore optical microscopes can be used to observe eukaryotic cells, their nuclei and possibly mitochondria and chloroplasts
    • Optical microscopes cannot be used to observe smaller organelles such as ribosomes, the endoplasmic reticulum or lysosomes

  • The maximum useful magnification of optical microscopes is about ×1500

Electron microscopes

  • Electron microscopes use electrons to form an image
  • This greatly increases the resolution of electron microscopes compared to optical microscopes, giving a more detailed image
    • A beam of electrons has a much smaller wavelength than light, so an electron microscope can resolve (distinguish between) two objects that are extremely close together

  • Electron microscopes have a maximum resolution of around 0.0002 µm or 0.2 nm (i.e. around 1000 times greater than that of optical microscopes)
    • This means electron microscopes can be used to observe small organelles such as ribosomes, the endoplasmic reticulum or lysosomes

  • The maximum useful magnification of electron microscopes is about ×1,500,000
  • There are two types of electron microscopes:
    • Transmission electron microscopes (TEMs)
    • Scanning electron microscopes (SEMs)

Transmission electron microscopes (TEMs)

  • TEMs use electromagnets to focus a beam of electrons
  • This beam of electrons is transmitted through the specimen
  • Denser parts of the specimen absorb more electrons
    • This makes these denser parts appear darker on the final image produced (produces contrast between different parts of the object being observed)

  • Advantages of TEMs:
    • They give high-resolution images (more detail)
    • This allows the internal structures within cells (or even within organelles) to be seen

  • Disadvantages of TEMs:
    • They can only be used with very thin specimens or thin sections of the object being observed
    • They cannot be used to observe live specimens (as there is a vacuum inside a TEM, all the water must be removed from the specimen and so living cells cannot be observed, meaning that specimens must be dead, unlike optical microscopes that can be used to observe live specimens)
    • The lengthy treatment required to prepare specimens means that artefacts can be introduced (artefacts look like real structures but are actually the results of preserving and staining)
    • They do not produce a colour image (unlike optical microscopes that produce a colour image)

Scanning electron microscopes (SEMs)

  • SEMs scan a beam of electrons across the specimen
  • This beam bounces off the surface of the specimen and the electrons are detected, forming an image
    • This means SEMs can produce three-dimensional images that show the surface of specimens

  • Advantages of SEMs:
    • They can be used on thick or 3-D specimens
    • They allow the external, 3-D structure of specimens to be observed

  • Disadvantages of SEMs:
    • They give lower resolution images (less detail) than TEMs
    • They cannot be used to observe live specimens (unlike optical microscopes that can be used to observe live specimens)
    • They do not produce a colour image (unlike optical microscopes that produce a colour image)

Laser scanning confocal microscopes

  • These microscopes are relatively new technology
  • The cells being viewed must be stained with fluorescent dyes
  • A thick section of tissue or small living organisms are scanned with a laser beam
    • The laser beam is reflected by the fluorescent dyes

  • Multiple depths of the tissue section/organisms are scanned to produce an image
    • Think of it like the laser beam is building up the image layer by layer

  • Advantages:
    • They can be used on thick or 3-D specimens
    • They allow the external, 3-D structure of specimens to be observed
    • Very clear images are produced. The high resolution is due to the fact that the laser beam can be focused at a very specific depth
      • You can even see the structure of the cytoskeleton in cells

  • Disadvantages:
    • It is a slow process and takes a long time to obtain an image
    • The laser has the potential to cause photodamage to the cells

Exam Tip

This is a lot of information to learn! First, make sure you know the basics of how each type of microscope works. Then learn the advantages and disadvantages of each type of microscope. In particular, make sure you can compare and contrast the different microscopes in terms of their relative advantages and disadvantages. In an exam question, you could be given a situation and then asked which type of electron microscope would be most suitable to use and why. A good revision idea is to make a table of the advantages and disadvantages of each type of microscope...then learn them!

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 80,663 Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Lára

Author: Lára

Lára graduated from Oxford University in Biological Sciences and has now been a science tutor working in the UK for several years. Lára has a particular interest in the area of infectious disease and epidemiology, and enjoys creating original educational materials that develop confidence and facilitate learning.