Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Past Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic Questions
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Edexcel International AS Maths: Statistics 1

Revision Notes

Home / International AS / Maths: Statistics 1 / Edexcel / Revision Notes / 3. Statistical Distributions / 3.1 Discrete Random Variables / 3.1.4 Discrete Uniform Distribution


3.1.4 Discrete Uniform Distribution


Discrete Uniform Distribution

What is a discrete uniform distribution?

  • A discrete uniform distribution is a discrete probability distribution
  • The discrete random variable X follows a discrete uniform distribution if
    • There are a finite number of distinct outcomes (n)
    • Each outcome is equally likely
  • If there are n distinct outcomes,  P left parenthesis X equals x right parenthesis equals 1 over n
  • In many cases the outcomes of X are the integers 1, 2, 3, .., n
    • P left parenthesis X equals x right parenthesis equals 1 over n for begin mathsize 16px style n equals 1 comma space 2 comma space 3 comma space... comma n end style
    • 0 for any other value of X
  • The distribution can be represented visually using a vertical line graph where the lines have equal heights

3-1-4-discrete-uniform-diagram-1

What is the mean and variance of a discrete uniform distribution?

  • If the outcomes of X are the integers 1, 2, 3, …, n
    • The expected value (mean) is begin mathsize 16px style fraction numerator n plus 1 over denominator 2 end fraction end style
    • The variance is fraction numerator size 16px n to the power of size 16px 2 size 16px minus size 16px 1 over denominator size 16px 12 end fraction
      • Square root to get the standard deviation
  • The discrete uniform distribution is symmetrical so the median is the same as the mean
    • There is no mode as each value is equally likely

Do the outcomes have to be 1 to n?

  • The numbers can be anything as long as they are equally likely
  • The formulae for the mean and variance only apply when the values are the integers 1 to n
  • If the outcomes form an arithmetic sequence then the distribution can be transformed to the distribution with the values 1 to n
  • If X is the discrete uniform distribution using 1 to n and Y is a discrete uniform distribution whose outcomes form an arithmetic sequence then:
    • Y = aX + b
  • You can then use this formula to find the mean and variance
    • E(Y) = aE(X) + b
    • Var(Y) = a² Var(X)
  • For example: Y = 2, 5, 8, 11 can be transformed to X = 1, 2, 3, 4 using Y = 3X - 1

What can be modelled using a discrete uniform distribution?

  • Anything which satisfies the two conditions
    • finite distinct outcomes and all equally likely
  • For example, let R be the second digit of a number given by a random number generator
    • There are 10 distinct outcomes: 0, 1, 2, ..., 9
    • As it is a random number then each value is equally likely to be the second digit

What can not be modelled using a discrete uniform distribution?

  • Anything where the number of outcomes is infinite
    • The number obtained when a person is asked to write down any integer
  • Anything where the outcomes are not equally likely
    • The number obtained when one of the first 5 Fibonacci numbers is randomly selected
      • 1, 1, 2, 3, 5
      • 1 appears twice so is more likely to be picked than the rest

Worked Example

Each odd number from 1 to 99 is written on an individual tile and one is chosen at random. The random variable T represents the number on the chosen tile.

(a)       Find E left parenthesis T right parenthesis.

(b)       Find Var left parenthesis T right parenthesis.

(a)       Find E left parenthesis T right parenthesis.

 3-1-4-discrete-uniform-we-solution-part-1

3-1-4-discrete-uniform-we-solution-part-2

(b)       Find Var left parenthesis T right parenthesis.

3-1-4-discrete-uniform-we-solution-part-3

Exam Tip

  • Always check your mean and variance makes sense. If the numbers go from 1 to 100 then a mean of 101 is not possible!


  • 1. Data Presentation & Interpretation
    • 1.1 Statistical Measures
      • 1.1.1 Basic Statistical Measures
        • 1.1.2 Frequency Tables
          • 1.1.3 Standard Deviation & Variance
            • 1.1.4 Coding
              • 1.1.5 Statistical Modelling
              • 1.2 Working with Data
                • 1.2.1 Data Presentation
                  • 1.2.2 Stem and Leaf Diagrams
                    • 1.2.3 Box Plots
                      • 1.2.4 Histograms
                        • 1.2.5 Outliers
                          • 1.2.6 Intrepreting Data
                            • 1.2.7 Skewness
                            • 1.3 Correlation & Regression
                              • 1.3.1 Properties of Scatter Diagrams
                                • 1.3.2 Correlation & Regression
                                  • 1.3.3 Coding Bivariate Data
                                • 2. Probability
                                  • 2.1 Basic Probability
                                    • 2.1.1 Calculating Probabilities & Events
                                      • 2.1.2 Venn Diagrams
                                        • 2.1.3 Tree Diagrams
                                        • 2.2 Further Probability
                                          • 2.2.1 Conditional Probability
                                            • 2.2.2 Further Venn Diagrams
                                              • 2.2.3 Further Tree Diagrams
                                                • 2.2.4 Probability Formulae
                                              • 3. Statistical Distributions
                                                • 3.1 Discrete Random Variables
                                                  • 3.1.1 Discete Probability Distributions
                                                    • 3.1.2 E(X) & Var(X) (Discrete)
                                                      • 3.1.3 aX+b
                                                        • 3.1.4 Discrete Uniform Distribution
                                                        • 3.2 Normal Distribution
                                                          • 3.2.1 The Normal Distribution
                                                            • 3.2.2 Standard Normal Distribution
                                                              • 3.2.3 Normal Distribution - Calculations
                                                                • 3.2.4 Finding Sigma and Mu


                                                                DOWNLOAD PDF

                                                              Author: Daniel

                                                              Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.


                                                              Save My Exams Logo
                                                              Resources
                                                              Home Join Support

                                                              Members
                                                              Members Home Account Login

                                                              Company
                                                              About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                              Quick Links
                                                              GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                               
                                                              © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                              IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.