Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Past Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic Questions
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Edexcel International A Level Maths: Statistics 2

Revision Notes

Home / International A Level / Maths: Statistics 2 / Edexcel / Revision Notes / 1. Statistical Distributions / 1.4 Cumulative Distribution Function / 1.4.1 Cumulative Distribution Function


1.4.1 Cumulative Distribution Function


Cumulative Distribution Function

What is the cumulative distribution function (c.d.f.)?

  • For a continuous random variable,X , with probability density function f(x) the cumulative distribution function (c.d.f.) is defined as

bold F bold left parenthesis bold italic x subscript bold 0 bold right parenthesis bold equals bold italic P bold left parenthesis bold italic X bold less or equal than bold italic x subscript bold 0 bold right parenthesis bold equals bold integral subscript bold minus bold infinity end subscript superscript bold x subscript bold 0 end superscript bold f bold left parenthesis bold italic t bold right parenthesis bold space bold d bold italic t

  • Compare this to the cumulative distribution function for a discrete random variable

straight F left parenthesis x subscript 0 right parenthesis equals P left parenthesis X less or equal than x subscript 0 right parenthesis equalssum for x less or equal than x subscript 0 of straight P left parenthesis X equals x right parenthesis

  • F(x0) is the probability that X is a value less than or equal to x0
  • Notice the use of uppercase text F end text for the c.d.f. but lowercase text f end text  for the p.d.f.
  • On the graph of the p.d.f. y= f(x)  this would be the area under the graph up to the (vertical) line x=x0
  •  F(x) should be defined for all values of x element of straight real numbers
  • The graph of the c.d.f. y = F(x) will
    • start on the x-axis (i.e. start at a probability of 0)
    • end at x = 1  (i.e. finish at a probability of 1)
    • will be continuous function, even when defined piecewise

e.g.

straight F left parenthesis x right parenthesis equals open curly brackets table row 0 cell x less than 0 end cell row cell 0.5 x squared end cell cell 0 less or equal than x less or equal than 1 end cell row cell 0.5 end cell cell 1 less or equal than x less or equal than 1.5 end cell row cell x minus 1 end cell cell 1.5 less or equal than x less or equal than 2 end cell row 1 cell x greater than 2 end cell end table close

BSM6-gbH_1-4-1-ial-fig1-cdf-graph

 

  • The horizontal lines at F(x) = 0 and F(x) = 1 may not always be shown

How do I find probabilities using the cumulative frequency distribution?

  • straight P left parenthesis a less or equal than X less or equal than b right parenthesis equals straight F left parenthesis b right parenthesis minus straight F left parenthesis a right parenthesis
  • Although straight P left parenthesis X equals k right parenthesis, for all values of k , F(k) is not necessarily zero

How do I find the cumulative frequency distribution (c.d.f.) from the probability density function (p.d.f.) and vice versa?

 

  • To find the c.d.f.,F(x)  , from the p.d.f.,f(x), integrate

straight F left parenthesis x right parenthesis equals integral subscript negative infinity end subscript superscript x straight f left parenthesis t right parenthesis space d t

    • Ensure you define F(x) fully forx element of straight real numbers  so include values of x for which F(x) = 0  and values of x for which F(x) = 1
    • For piecewise functions as well as integrating you will need to add on the value of the c.d.f. at the end of the previous part
      • Suppose there are two sections to a p.d.f. x less or equal than a and x greater than a
      • For x greater than a:

straight F left parenthesis x right parenthesis equals integral subscript negative infinity end subscript superscript x straight f left parenthesis t right parenthesis space straight d t space equals integral subscript negative infinity end subscript superscript a straight f left parenthesis t right parenthesis space straight d t space plus integral subscript a superscript x straight f left parenthesis t right parenthesis space straight d t space equals space straight F left parenthesis a right parenthesis plus integral subscript a superscript x straight f left parenthesis t right parenthesis space straight d t

    • Therefore the c.d.f can be calculated for the interval a < x < b  by using

straight F left parenthesis x right parenthesis space equals space straight F left parenthesis a right parenthesis space plus space integral subscript a superscript x straight f left parenthesis t right parenthesis space straight d t

      • See part (b) in the Worked Example below
  • To find the p.d.f from the c.d.f., differentiate

straight f left parenthesis x right parenthesis equals fraction numerator d over denominator d x end fraction straight F left parenthesis x right parenthesis

  • Any part of a c.d.f that is constant corresponds to the p.d.f. for that part being zero (the derivative of a constant is zero)

How do I find the median, quartiles and percentiles using the cumulative frequency distribution (c.d.f.)?

 

  • For piecewise functions, first identify the section the required value lies in
    • To do this find the upper limit of each section of the c.d.f.
  • To find the median, m, solve the equation F(m) = 0.5
    • The median is sometimes referred to as the second quartile, Q2
  • To find the lower quartile, Q1, solve the equation F(Q1) = 0.25
  • To find the upper quartile,Q3  , solve the equation F(Q3 ) = 0.75
  • To find the nth percentile, solve the equation  straight F left parenthesis p right parenthesis equals n over 100

Worked Example

a)
The continuous random variable, X , has cumulative distribution function

 

straight F left parenthesis x right parenthesis equals open curly brackets table row cell space space space space space space space 0 end cell cell x less than 0 end cell row cell 1 fourth x open parentheses 4 minus x close parentheses end cell cell 0 less or equal than x less or equal than 2 end cell row cell space space space space space space space 1 end cell cell x greater than 2 end cell end table close

Find

(i)
straight P left parenthesis X greater than 1.5 right parenthesis
(ii)
straight P left parenthesis 0.5 less or equal than X less or equal than 1 right parenthesis
(iii)

The lower quartile of X.

(b)       The continuous random variable, X, has probability density function

 f left parenthesis x right parenthesis equals open curly brackets table row cell 0.5 x end cell cell 0 less or equal than x less or equal than 1 end cell row cell 0.5 end cell cell 1 less or equal than x less or equal than 2.5 end cell row 0 otherwise end table close
 

Find the cumulative frequency distribution, straight F left parenthesis x right parenthesis .

a)
The continuous random variable, X , has cumulative distribution function

 

straight F left parenthesis x right parenthesis equals open curly brackets table row cell space space space space space space space 0 end cell cell x less than 0 end cell row cell 1 fourth x open parentheses 4 minus x close parentheses end cell cell 0 less or equal than x less or equal than 2 end cell row cell space space space space space space space 1 end cell cell x greater than 2 end cell end table close

Find

(i)
straight P left parenthesis X greater than 1.5 right parenthesis
(ii)
straight P left parenthesis 0.5 less or equal than X less or equal than 1 right parenthesis
(iii)

The lower quartile of X.

1-4-1-ial-fig2-we-solution-part-1

(b)       The continuous random variable, X, has probability density function

 f left parenthesis x right parenthesis equals open curly brackets table row cell 0.5 x end cell cell 0 less or equal than x less or equal than 1 end cell row cell 0.5 end cell cell 1 less or equal than x less or equal than 2.5 end cell row 0 otherwise end table close
 

Find the cumulative frequency distribution, straight F left parenthesis x right parenthesis .

1-4-1-ial-fig2-we-solution-part-2

Exam Tip

  • Remember that P(X=k) = 0  , for any value of k, is zero
    • This can be easily missed when working with c.d.f. rather than a p.d.f.
  • A quick check you can do is verify that your c.d.f. is continuous
    • The value of the c.d.f. at the upper limit of one section should equal the value of the c.d.f at the lower limit of the next section


  • 1. Statistical Distributions
    • 1.1 Binomial Distribution
      • 1.1.1 The Binomial Distribution
        • 1.1.2 Calculating Binomial Probabilities
        • 1.2 Poisson Distribution
          • 1.2.1 The Poisson Distribution
            • 1.2.2 Calculating Poisson Probabilities
            • 1.3 Continuous Random Variables
              • 1.3.1 Probability Density Function
                • 1.3.2 E(X) & Var(X) (Continuous)
                  • 1.3.3 Continuous Uniform Distribution
                  • 1.4 Cumulative Distribution Function
                    • 1.4.1 Cumulative Distribution Function
                    • 1.5 Working with Distributions
                      • 1.5.1 Modelling with Distributions
                        • 1.5.2 Approximating the Poisson Distribution
                          • 1.5.3 Approximating the Binomial Distribution
                        • 2. Hypothesis Testing
                          • 2.1 Sampling Distributions & Hypothesis Testing
                            • 2.1.1 Sampling Distributions
                              • 2.1.2 Hypothesis Testing
                              • 2.2 Hypothesis Testing (Discrete Distributions)
                                • 2.2.1 Binomial Hypothesis Testing
                                  • 2.2.2 Poisson Hypothesis Testing


                                  DOWNLOAD PDF

                                Author: Paul

                                Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams – one of the many reasons he is excited to be a member of the SME team.


                                Save My Exams Logo
                                Resources
                                Home Join Support

                                Members
                                Members Home Account Login

                                Company
                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                Quick Links
                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                 
                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.