Hooke's Law (Edexcel GCSE Physics)

Revision Note

Test Yourself
Katie M

Author

Katie M

Expertise

Physics

Hooke's Law

  • The relationship between the extension of an elastic object and the applied force is defined by Hooke's Law
  • Hooke's Law states that:

The extension of an elastic object is directly proportional to the force applied, up to the limit of proportionality

  • Directly proportional means that as more force is applied, the greater the extension (and vice versa)
  • The limit of proportionality is where if more force is added, the object may extend but will not return to its original shape when the force is removed (it will be inelastically distorted)
    • This varies according to the material

Load extension and force, downloadable AS & A Level Physics revision notes

Hooke's Law states that a force applied to a spring will cause it to extend by an amount proportional to the force

  • Hooke's Law is defined by the equation:

F = k × x

  • Where:
    • F = force in newtons (N)
    • k = spring constant in newtons per metres (N/m)
    • x = extension in metres (m)

  • The symbol x can represent either the extension or compression of an elastic object
  • The Hooke's law equation can be rearranged using the following formula triangle:

Hookes Law Formula Triangle GCSE, downloadable IGCSE & GCSE Physics revision notes
  • The spring constant represents how stiff a spring is
    • The higher the spring constant, the higher the stiffness

  • The extension of an object can be calculated by:

Final length – Original length

  • The extension of the spring can be measured by marking the position of bottom of the unstretched spring
  • When the spring is stretched the final length must be measured from the bottom of the spring

Extension worked example, IGCSE & GCSE Physics revision notes

The extension measured from its final and original length

Worked example

The figure below shows the forces acting on a child who is balancing on a pogo stick.The child and pogo stick are not moving.Hookes Law Worked Example, downloadable IGCSE & GCSE Physics revision notesThe spring constant of the spring on the pogo stick is 4900 N/m. The weight of the child causes the spring to compress elastically from a length of 40 cm to a new length of 33 cm.Calculate the weight of the child.

Step 1: List the known quantities

    • Spring constant, k = 4900 N/m
    • Original length = 40 cm
    • Final length = 33 cm

Step 2: Write the relevant equation

F = kx

Step 3: Calculate the extension, x

x = final length – original length = 40 – 33 = 7 cm

Step 4: Convert any units

    • Since the spring constant is given in N/m, x must be in metres (m)

7 cm = 0.07 m

Step 5: Substitute the values into the Hooke's Law equation

F = 4900 × 0.07 = 343 N

Exam Tip

Look out for unit conversions! Unless the spring constant is given in N/cm, make sure the extension is converted into metres (÷ 100) before substituting values into the Hooke's Law equation

Linear & Non-Linear Stretching

  • Hooke’s law is the linear relationship between force and extension
    • This is represented by a straight line on a force-extension graph

  • Materials that do not obey Hooke's law, i.e they do not return to their original shape once the force has been removed, have a non-linear relationship between force and extension
    • This is represented by a curve on a force-extension graph

  • Any material beyond its limit of proportionality will have a non-linear relationship between force and extension

Linear and Non-linear Relationship, downloadable IGCSE & GCSE Physics revision notes

Linear and non-linear regions of a force-extension graph

Exam Tip

Remember these important mathematical terms:

  • Proportional = when a graph is a straight line going through the origin
  • Linear = when a graph is a straight line (but does not necessarily go through the origin)
  • Non-linear = when a graph is not a straight line

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Katie M

Author: Katie M

Katie has always been passionate about the sciences, and completed a degree in Astrophysics at Sheffield University. She decided that she wanted to inspire other young people, so moved to Bristol to complete a PGCE in Secondary Science. She particularly loves creating fun and absorbing materials to help students achieve their exam potential.