Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Revision NotesPast Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic QuestionsRevision Notes
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast PapersRevision Notes
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

DP IB Maths: AI SL

Revision Notes

Home / IB / Maths: AI SL / DP / Revision Notes / 2. Functions / 2.2 Further Functions & Graphs / 2.2.1 Functions


2.2.1 Functions


Language of Functions

What is a mapping?

  • A mapping transforms one set of values (inputs) into another set of values (outputs)
  • Mappings can be:
    • One-to-one
      • Each input gets mapped to exactly one unique output
      • No two inputs are mapped to the same output
      • For example: A mapping that cubes the input
    • Many-to-one
      • Each input gets mapped to exactly one output
      • Multiple inputs can be mapped to the same output
      • For example: A mapping that squares the input
    • One-to-many
      • An input can be mapped to more than one output
      • No two inputs are mapped to the same output
      • For example: A mapping that gives the numbers which when squared equal the input
    • Many-to-many
      • An input can be mapped to more than one output
      • Multiple inputs can be mapped to the same output
      • For example: A mapping that gives the factors of the input

Language of Functions Notes Diagram 2

What is a function?

  • A function is a mapping between two sets of numbers where each input gets mapped to exactly one output
    • The output does not need to be unique

  • One-to-one and many-to-one mappings are functions
  • A mapping is a function if its graph passes the vertical line test
    • Any vertical line will intersect with the graph at most once

Language of Functions Notes Diagram 4

What notation is used for functions?

  • Functions are denoted using letters (such as space f comma space v comma space g comma etc)
    • A function is followed by a variable in a bracket
    • This shows the input for the function
    • The letterspace f is used most commonly for functions and will be used for the remainder of this revision note
  • space f left parenthesis x right parenthesis represents an expression for the value of the function space f when evaluated for the variable x
  • Function notation gets rid of the need for words which makes it universal
    • space f equals 5 whenspace x equals 2 can simply be written as space f left parenthesis 2 right parenthesis equals 5

What are the domain and range of a function?

  • The domain of a function is the set of values that are used as inputs
  • A domain should be stated with a function
    • If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
    • Domains are expressed in terms of the input
      • space x less or equal than 2
  • The range of a function is the set of values that are given as outputs
    • The range depends on the domain
    • Ranges are expressed in terms of the output
      • space f stretchy left parenthesis x right parenthesis greater or equal than 0
  • To graph a function we use the inputs as the x-coordinates and the outputs as the y-coordinates
    • space f left parenthesis 2 right parenthesis equals 5 corresponds to the coordinates (2, 5)
  • Graphing the function can help you visualise the range
  • Common sets of numbers have special symbols:
    • straight real numbers represents all the real numbers that can be placed on a number line
      • x element of straight real numbers means xis a real number
    • straight rational numbers represents all the rational numbers a over bwhere a and b are integers and b ≠ 0
    • straight integer numbers represents all the integers (positive, negative and zero)
      • straight integer numbers to the power of plus represents positive integers
    • straight natural numbers represents the natural numbers (0,1,2,3...)

2-3-1-sets-of-numbers-diagram

Exam Tip

  • Questions may refer to "the largest possible domain"
    • this would usually be  x element of straight real numbers  unless natural numbers, integers or quotients has already been stated
    • there are usually some exceptions
      • e.g.  square roots;  x greater or equal than 0  for a function involving  square root of x
      • e.g.  reciprocal functions;  x not equal to 2  for a function with denominator  left parenthesis x minus 2 right parenthesis  

Worked Example

For the function space f open parentheses x close parentheses equals x cubed plus 1 comma blank 2 less or equal than x less or equal than 10:

a)
write down the value of space f left parenthesis 7 right parenthesis.

2-2-1-ib-ai-sl-language-of-functions-a-we-solution

b)
find the range of space f left parenthesis x right parenthesis.

2-2-1-ib-ai-sl-language-of-functions-b-we-solution

Inverse Functions

What is an inverse function?

  • Only one-to-one functions have inverses
  • A function has an inverse if its graph passes the horizontal line test
    • Any horizontal line will intersect with the graph at most once
  • Given a function space f left parenthesis x right parenthesis we denote the inverse function as space f to the power of negative 1 end exponent left parenthesis x right parenthesis
  • An inverse function reverses the effect of a function
    • space f left parenthesis 2 right parenthesis equals 5 means space f to the power of negative 1 end exponent left parenthesis 5 right parenthesis equals 2
  • Inverse functions are used to solve equations
    • The solution of space f left parenthesis x right parenthesis equals 5 is space x equals f to the power of negative 1 end exponent left parenthesis 5 right parenthesis

Language of Functions Notes Diagram 9

What are the connections between a function and its inverse function?

  • The domain of a function becomes the range of its inverse
  • The range of a function becomes the domain of its inverse
  • The graph of space y equals f to the power of negative 1 end exponent left parenthesis x right parenthesis is a reflection of the graph space y equals f left parenthesis x right parenthesis in the line space y equals x
    • Therefore solutions to space f left parenthesis x right parenthesis equals x or space f to the power of negative 1 end exponent left parenthesis x right parenthesis equals x will also be solutions to space f left parenthesis x right parenthesis equals f to the power of negative 1 end exponent left parenthesis x right parenthesis
      • There could be other solutions to space f left parenthesis x right parenthesis equals f to the power of negative 1 end exponent left parenthesis x right parenthesis that don't lie on the line space y equals x

Inverse Functions Notes Diagram 2

Exam Tip

  • Remember that, in general,  f to the power of negative 1 end exponent left parenthesis x right parenthesis not equal to fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction

Worked Example

For the function space f open parentheses x close parentheses equals x cubed plus 1 comma blank 2 less or equal than x less or equal than 10:

a)
write down the range of the inverse function, space f to the power of negative 1 end exponent left parenthesis x right parenthesis.

2-2-1-ib-ai-sl-inverse-functions-a-we-solution-we-solution

b)
find the value of space f to the power of negative 1 end exponent left parenthesis 217 right parenthesis.

2-2-1-ib-ai-sl-inverse-functions-b-we-solution-we-solution

Piecewise Functions

What are piecewise functions?

  • Piecewise functions are defined by different functions depending on which interval the input is in
    • E.g. space f open parentheses x close parentheses equals open curly brackets table row cell x plus 1 end cell row cell 2 x minus 4 end cell end table blank table attributes columnalign left end attributes row cell x less or equal than 5 end cell row cell 5 less than x less than 10 end cell end table close
  • The region for the individual functions cannot overlap
  • To evaluate a piecewise function for a particular value space x equals k
    • Find which interval includes space k
    • Substitute space x equals k into the corresponding function

Worked Example

For the piecewise function

f open parentheses x close parentheses equals open curly brackets table row cell 2 x minus 5 end cell row cell 3 x plus 1 end cell end table blank table attributes columnalign left end attributes row cell negative 10 less or equal than x less or equal than 10 end cell row cell x greater than 10 end cell end table close,

a)
find the values of space f left parenthesis 0 right parenthesis comma space f left parenthesis 10 right parenthesis comma space f left parenthesis 20 right parenthesis.

2-2-1-ib-ai-sl-piecewise-functions-a-we-solution-we-solution

b)
state the domain.

2-2-1-ib-ai-sl-piecewise-functions-b-we-solution-we-solution



  • 1. Number & Algebra
    • 1.1 Number Toolkit
      • 1.1.1 Standard Form
        • 1.1.2 Exponents & Logarithms
          • 1.1.3 Approximation & Estimation
            • 1.1.4 GDC: Solving Equations
            • 1.2 Sequences & Series
              • 1.2.1 Language of Sequences & Series
                • 1.2.2 Arithmetic Sequences & Series
                  • 1.2.3 Geometric Sequences & Series
                    • 1.2.4 Applications of Sequences & Series
                    • 1.3 Financial Applications
                      • 1.3.1 Compound Interest & Depreciation
                        • 1.3.2 Amortisation & Annuities
                      • 2. Functions
                        • 2.1 Linear Functions & Graphs
                          • 2.1.1 Equations of a Straight Line
                          • 2.2 Further Functions & Graphs
                            • 2.2.1 Functions
                              • 2.2.2 Graphing Functions
                                • 2.2.3 Properties of Graphs
                                • 2.3 Modelling with Functions
                                  • 2.3.1 Linear & Piecewise Models
                                    • 2.3.2 Quadratic & Cubic Models
                                      • 2.3.3 Exponential Models
                                        • 2.3.4 Direct & Inverse Variation
                                          • 2.3.5 Sinusoidal Models
                                            • 2.3.6 Strategy for Modelling Functions
                                          • 3. Geometry & Trigonometry
                                            • 3.1 Geometry Toolkit
                                              • 3.1.1 Coordinate Geometry
                                                • 3.1.2 Arcs & Sectors
                                                • 3.2 Geometry of 3D Shapes
                                                  • 3.2.1 3D Coordinate Geometry
                                                    • 3.2.2 Volume & Surface Area
                                                    • 3.3 Trigonometry
                                                      • 3.3.1 Pythagoras & Right-Angled Triganometry
                                                        • 3.3.2 Non Right-Angled Trigonometry
                                                          • 3.3.3 Applications of Trigonometry & Pythagoras
                                                          • 3.4 Voronoi Diagrams
                                                            • 3.4.1 Voronoi Diagrams
                                                              • 3.4.2 Toxic Waste Dump Problem
                                                            • 4. Statistics & Probability
                                                              • 4.1 Statistics Toolkit
                                                                • 4.1.1 Sampling & Data Collection
                                                                  • 4.1.2 Statistical Measures
                                                                    • 4.1.3 Frequency Tables
                                                                      • 4.1.4 Linear Transformations of Data
                                                                        • 4.1.5 Outliers
                                                                          • 4.1.6 Univariate Data
                                                                            • 4.1.7 Interpreting Data
                                                                            • 4.2 Correlation & Regression
                                                                              • 4.2.1 Bivariate data
                                                                                • 4.2.2 Correlation Coefficients
                                                                                  • 4.2.3 Linear Regression
                                                                                  • 4.3 Probability
                                                                                    • 4.3.1 Probability & Types of Events
                                                                                      • 4.3.2 Conditional Probability
                                                                                        • 4.3.3 Sample Space Diagrams
                                                                                        • 4.4 Probability Distributions
                                                                                          • 4.4.1 Discrete Probability Distributions
                                                                                            • 4.4.2 Expected Values
                                                                                            • 4.5 Binomial Distribution
                                                                                              • 4.5.1 The Binomial Distribution
                                                                                                • 4.5.2 Calculating Binomial Probabilities
                                                                                                • 4.6 Normal Distribution
                                                                                                  • 4.6.1 The Normal Distribution
                                                                                                    • 4.6.2 Calculations with Normal Distribution
                                                                                                    • 4.7 Hypothesis Testing
                                                                                                      • 4.7.1 Hypothesis Testing
                                                                                                        • 4.7.2 Chi-squared Test for Independence
                                                                                                          • 4.7.3 Goodness of Fit Test
                                                                                                            • 4.7.4 The t-test
                                                                                                          • 5. Calculus
                                                                                                            • 5.1 Differentiation
                                                                                                              • 5.1.1 Introduction to Differentiation
                                                                                                                • 5.1.2 Applications of Differentiation
                                                                                                                  • 5.1.3 Modelling with Differentiation
                                                                                                                  • 5.2 Integration
                                                                                                                    • 5.2.1 Trapezoid Rule: Numerical Integration
                                                                                                                      • 5.2.2 Introduction to Integration
                                                                                                                        • 5.2.3 Applications of Integration


                                                                                                                        DOWNLOAD PDF

                                                                                                                      Author: Daniel

                                                                                                                      Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.


                                                                                                                      Save My Exams Logo
                                                                                                                      Resources
                                                                                                                      Home Join Support

                                                                                                                      Members
                                                                                                                      Members Home Account Login

                                                                                                                      Company
                                                                                                                      About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                      Quick Links
                                                                                                                      GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                       
                                                                                                                      © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                                                                      IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.