Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
CCEA Topic QuestionsPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsGeographyHistoryPsychologySociology
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychology
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Other Subjects
CIE English LiteratureBusinessComputer ScienceEconomicsGeographyHistorySociology
Edexcel English LiteratureBusinessComputer ScienceGeographyHistory
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographyPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureGeographyHistoryPsychologySociology
Edexcel IAL English LiteratureGeographyPsychology
CIE IAL History
BiologyChemistryPhysics
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Up to 33% off discounts extended!

Ace your exams with up to 33% off our Annual and Quarterly plans for a limited time only. T&Cs apply.


Ok, hide this.

CIE AS Maths: Probability & Statistics 1

Revision Notes

Home / AS / Maths: Probability & Statistics 1 / CIE / Revision Notes / 3. Statistical Distributions / 3.3 Normal Distribution / 3.3.3 Normal Distribution - Calculations


3.3.3 Normal Distribution - Calculations


Normal Distribution - Calculations

Throughout this section we will use the random variable X tilde straight N left parenthesis mu comma sigma squared right parenthesis . For normal, X can take any real number. Therefore any values mentioned in this section will be assumed to be any real number.

Calculating Normal Probabilities

How do I find probabilities using a normal distribution?

  • The area under a normal curve between the points x equals a and x equals b is equal to the probability P(a < X < b )
    • Remember for a normal distribution P left parenthesis a less or equal than X less or equal than b right parenthesis equals P left parenthesis a less than X less than b right parenthesis so you do not need to worry about whether the inequality is strict (< or >) or weak (≤ or ≥)
  • The equation of a normal distribution curve is complicated so the area must be calculated numerically
  • You will be expected to standardise all normal distributions to z and use the table of the normal distribution to find the probabilities
    • It is likely that your calculator has a function that can find normal probabilities, if so it is a good idea to learn to use it so that you can check your probabilities
    • However you must show your calculations to get the z values and use the tables to get all the marks

How do I calculate the probability for a normal distribution?

  • A random variable X tilde straight N left parenthesis mu comma sigma squared right parenthesis  can be coded to model the standard normal distribution Z tilde straight N left parenthesis 0 comma 1 squared right parenthesis using the formula

Z equals fraction numerator X minus mu over denominator sigma end fraction

  • You can calculate a probability straight P left parenthesis X less than x right parenthesis using the relationship straight P left parenthesis X less than x right parenthesis equals straight P open parentheses Z less than fraction numerator x minus mu over denominator sigma end fraction close parentheses
  • Always sketch a quick diagram to visualise which area you are looking for
  • Once you have determined the z value use the table of the normal distribution to find the probability
    • Refer to your sketch to decide if you need to subtract the probability from one

The probability of a single value is always zero for a normal distribution

    • You can picture this as the area of a single line is zero
    • bold P bold left parenthesis bold italic X bold equals bold italic x bold right parenthesis bold equals bold 0
  • straight P left parenthesis X less than mu right parenthesis equals straight P left parenthesis X greater than mu right parenthesis equals 0.5
    • You can look at which side of the mean x is on and the direction of the inequality to decide if your answer should be greater or less than 0.5
  • As straight P left parenthesis X equals a right parenthesis equals 0 you can use:
    • straight P left parenthesis X less than a right parenthesis plus straight P left parenthesis X greater than a right parenthesis equals 1
    • straight P left parenthesis X greater than a right parenthesis equals 1 minus straight P left parenthesis X less than a right parenthesis equals 1 minus straight capital phi open parentheses fraction numerator a minus mu over denominator sigma end fraction close parentheses
    • straight P left parenthesis a less than X less than b right parenthesis equals straight P left parenthesis X less than b right parenthesis minus straight P left parenthesis X less than a right parenthesis equals straight capital phi open parentheses fraction numerator b minus mu over denominator sigma end fraction close parentheses minus straight capital phi open parentheses fraction numerator a minus mu over denominator sigma end fraction close parentheses

Worked Example

The random variable X tilde straight N left parenthesis 20 space comma space 5 squared right parenthesis. Calculate:

(a)
P left parenthesis X space less or equal than space 22 right parenthesis,

 

(b)
straight P left parenthesis 18 less or equal than X less than 27 right parenthesis
(a)
P left parenthesis X space less or equal than space 22 right parenthesis,

 3-3-3-calculating-normal-probabilities-we-solution-1_a

(b)
straight P left parenthesis 18 less or equal than X less than 27 right parenthesis

3-3-3-calculating-normal-probabilities-we-solution-1_b

Inverse Normal Distribution

Given the value of P(X < a)  or P(X > a)  how do I find the value of a?

  • Given a probability you will have to look through the table of the normal distribution to locate the z-value that corresponds with that probability
  • Look at whether your probability is greater or less than 0.5 and the direction of the inequality to determine whether your z-value will be positive or negative
    • If straight P left parenthesis X less than a right parenthesis is more than 0.5 or straight P left parenthesis X greater than a right parenthesis is less than 0.5 then a should be bigger than the mean
      • z will be positive
    • If straight P left parenthesis X less than a right parenthesis is less than 0.5 or straight P left parenthesis X greater than a right parenthesis is more than 0.5 then a  should be smaller than the mean
      • z will be negative
  • You do not need to remember these, a sketch will help you see it
    • Always sketch a diagram

3-3-3-inverse-normal-diagram-1-

  • If your probability is less than 0.5 you will need to subtract it from one to find the corresponding z value
    • Remember that the position of the z-value will not change, only the direction of the inequality
  • Once you have the correct value substitute it into the formula z equals fraction numerator a minus mu over denominator sigma end fraction   and solve to find the value of a
  • Always check that your answer makes sense by considering where a is in relation to the mean

Given the value of P(µ- a < X < µ + a) I find the value of a  ?

  • A sketch making use of the symmetry of the graph is essential
  • If you are given P left parenthesis mu minus a less than X less than mu plus a right parenthesis equals a percent sign  then straight P left parenthesis X less than mu plus a right parenthesis will be begin mathsize 16px style open parentheses fraction numerator 100 plus a over denominator 2 end fraction close parentheses percent sign end style 
    • This is easier to see from a sketch than to remember
    • You can then look through the tables for the corresponding z-value and substitute into the formula  z equals fraction numerator left parenthesis mu plus a right parenthesis minus mu over denominator sigma end fraction equals a over sigma

3-3-3-inverse-normal-diagram-2

Worked Example

The random variable W tilde straight N left parenthesis 50 comma 36 right parenthesis  

Find the value of w such that  P left parenthesis W greater than w right parenthesis equals 0.7676

3-3-3-inverse-normal-we-solution-2

Exam Tip

  • The most common mistake students make when finding values from given probabilities is forgetting to check whether the z-value should be negative or not.  Avoid this by checking early on using a sketch whether z is positive or negative and writing a note to yourself before starting the other calculations.


  • 1. Data Presentation & Interpretation
    • 1.1 Statistical Measures
      • 1.1.1 Basic Statistical Measures
        • 1.1.2 Frequency Tables
          • 1.1.3 Standard Deviation & Variance
            • 1.1.4 Coding
            • 1.2 Representation of Data
              • 1.2.1 Data Presentation
                • 1.2.2 Stem and Leaf Diagrams
                  • 1.2.3 Box Plots & Cumulative Frequency
                    • 1.2.4 Histograms
                    • 1.3 Working with Data
                      • 1.3.1 Interpreting Data
                        • 1.3.2 Skewness
                      • 2. Probability
                        • 2.1 Basic Probability
                          • 2.1.1 Calculating Probabilities & Events
                            • 2.1.2 Venn Diagrams
                              • 2.1.3 Tree Diagrams
                              • 2.2 Permutations & Combinations
                                • 2.2.1 Arrangements & Factorials
                                  • 2.2.2 Permutations
                                    • 2.2.3 Combinations
                                    • 2.3 Further Probability
                                      • 2.3.1 Set Notation & Conditional Probability
                                        • 2.3.2 Further Tree Diagrams
                                          • 2.3.3 Further Venn Diagrams
                                            • 2.3.4 Probability Formulae
                                          • 3. Statistical Distributions
                                            • 3.1 Probability Distributions
                                              • 3.1.1 Discrete Probability Distributions
                                                • 3.1.2 E(X) & Var(X) (Discrete)
                                                • 3.2 Binomial & Geometric Distribution
                                                  • 3.2.1 The Binomial Distribution
                                                    • 3.2.2 Calculating Binomial Probabilities
                                                      • 3.2.3 The Geometric Distribution
                                                      • 3.3 Normal Distribution
                                                        • 3.3.1 The Normal Distribution
                                                          • 3.3.2 Standard Normal Distribution
                                                            • 3.3.3 Normal Distribution - Calculations
                                                              • 3.3.4 Finding Sigma and Mu
                                                              • 3.4 Working with Distributions
                                                                • 3.4.1 Modelling with Distributions
                                                                  • 3.4.2 Normal Approximation of Binomial


                                                                  DOWNLOAD PDF

                                                                Author: Amber

                                                                Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.


                                                                Save My Exams Logo
                                                                Resources
                                                                Home Join Support

                                                                Members
                                                                Members Home Account Login

                                                                Company
                                                                About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                Quick Links
                                                                GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                 
                                                                © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.