Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Past Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic Questions
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Revision Notes

Edexcel A Level Maths: Statistics

Revision Notes

Home / A Level / Maths: Statistics / Edexcel / Revision Notes / 4. Statistical Distributions / 4.2 Binomial Distribution / 4.2.1 The Binomial Distribution


4.2.1 The Binomial Distribution


Properties of Binomial Distribution

What is a binomial distribution?

  • A binomial distribution is a discrete probability distribution
  • The discrete random variable follows a binomial distribution if it counts the number of successes when an experiment satisfies the conditions:
    • There are a fixed finite number of trials begin mathsize 16px style left parenthesis n right parenthesis end style
    • The outcome of each trial is independent of the outcomes of the other trials
    • There are exactly two outcomes of each trial (success or failure)
    • The probability of success (p) is constant
  • If X follows a binomial distribution then it is denoted begin mathsize 16px style X tilde B left parenthesis n comma space p right parenthesis end style
    • begin mathsize 16px style n end style is the number of trials
    • begin mathsize 16px style p end style is the probability of success
  • The probability of failure is 1-p which is sometimes denoted as q
  • The formula for the probability of r successful trials is given by:
    • begin mathsize 16px style P equals left parenthesis X equals r right parenthesis equals open parentheses table row n row r end table close parentheses space p to the power of r space left parenthesis 1 minus p right parenthesis to the power of n minus r end exponent end style for r = 0, 1, 2,....,n
    • This is equal to the term which includes begin mathsize 16px style p to the power of r end style in the expansion of begin mathsize 16px style left parenthesis p plus q right parenthesis to the power of n end style where begin mathsize 16px style q equals 1 minus p end style (this shows the link with the Binomial Expansion)
    • You will be expected to use the distribution function on your calculator to calculate probabilities with the binomial distribution

What are the important properties of a binomial distribution?

  • The expected number (mean) of successful trials is bold italic n bold italic p
  • The variance of the number of successful trials is bold italic n bold italic p bold left parenthesis bold 1 bold minus bold italic p bold right parenthesis 
    • Square root to get the standard deviation
  • If X is the number of successes and Y is the number of failures then we have:
    • X tilde straight B left parenthesis n comma p right parenthesis space and space straight B left parenthesis n comma 1 minus p right parenthesis
    • begin mathsize 16px style X plus Y equals n end style
  • The distribution can be represented visually using a vertical line graph
    • If p is close to 0 then the graph has a tail to the right
    • If p is close to 1 then the graph has a tail to the left
    • If p is close to 0.5 then the graph is roughly symmetrical
    • If p =0.5 then the graph is symmetrical

4-2-1-the-binomial-distribution-diagram-1-part-1

4-2-1-the-binomial-distribution-diagram-1-part-2

4-2-1-the-binomial-distribution-diagram-1-part-3-1 

Modelling with Binomial Distribution

How do I set up a binomial model?

  • Identify what a trial is in the scenario
    • For example: rolling a dice, flipping a coin, checking hair colour
  • Identify what the successful outcome is in the scenario
    • For example: rolling a 6, landing on tails, having black hair
  • Make sure you clearly state what your random variable is
    • For example, let X  be the number of students in a class of 30 with black hair

What can be modelled using a binomial distribution?

  • Anything that satisfies the four conditions
  • For example, let T be the number of times a fair coin lands on tails when flipped 20 times: T tilde straight B open parentheses 20 comma 1 half close parentheses
    • A trial is flipping a coin: There are 20 trials so n =20
    • We can assume each coin flip does not affect subsequent coin flips: They are independent
    • A success is when the coin lands on tails: Two outcomes - tails or not tails (heads)
    • The coin is fair: The probability of tails is constant with p equals 1 half
  • Sometimes it might seem like there are more than two outcomes
    • For example, let Y be the number of yellow cars that are in a car park full of 100 cars
    • Although there are more than two possible colours of cars, here the trial is whether a car is yellow so there are two outcomes (yellow or not yellow)
    • Y would still need to fulfil the other conditions in order to follow a binomial distribution
  • Sometimes a sample may be taken from a population
    • For example, 30% of people in a city have blue eyes, a sample of 30 people from the city is taken and X is the number of them with blue eyes
    • As long as the population is large and the sample is random then it can be assumed that each person has a 30% chance of having blue eyes

What can not be modelled using a binomial distribution?

  • Anything where the number of trials is not fixed or is infinite
    • The number of emails received in an hour
    • The number of times a coin is flipped until it lands on heads
  • Anything where the outcome of one trial affects the outcome of the other trials
    • The number of caramels that a person eats when they eat 5 sweets from a bag containing 6 caramels and 4 marshmallows
      • If you eat a caramel for your first sweet then there are less caramels left in the bag when you choose your second sweet
  • Anything where there are more than two outcomes of a trial
    • A person's shoe size
    • The number a dice lands on when rolled
  • Anything where the probability of success changes
    • The number of times that a person can swim a length of a swimming pool in under a minute when swimming 50 lengths
      • The probability of swimming a lap in under a minute will decrease as the person gets tired

Worked Example

It is known that 8% of a large population are immune to a particular virus. Mark takes a sample of 50 people from this population. Mark uses a binomial model for the number of people in his sample that are immune to the virus

(a)
State the distribution that Mark uses.

 

(b)
State the two assumptions that Mark must make in order to use a binomial model.
(a)
State the distribution that Mark uses.

4-2-1-the-binomial-distribution-we-solution-part-1

(b)
State the two assumptions that Mark must make in order to use a binomial model.
4-2-1-the-binomial-distribution-we-solution-part-2

Exam Tip

  • If you are asked to criticise a binomial model always consider whether the trials are independent, this is usually the one that stops a variable from following a binomial distribution!


  • 1. Statistical Sampling
    • 1.1 Sampling & Data Collection
      • 1.1.1 Sampling & Data Collection
    • 2. Data Presentation & Interpretation
      • 2.1 Statistical Measures
        • 2.1.1 Basic Statistical Measures
          • 2.1.2 Frequency Tables
            • 2.1.3 Standard Deviation & Variance
              • 2.1.4 Coding
              • 2.2 Data Presentation
                • 2.2.1 Data Presentation
                  • 2.2.2 Box Plots & Cumulative Frequency
                    • 2.2.3 Histograms
                    • 2.3 Working with Data
                      • 2.3.1 Outliers & Cleaning Data
                        • 2.3.2 Intrepreting Data
                        • 2.4 Correlation & Regression
                          • 2.4.1 Correlation & Regression
                          • 2.5 Further Correlation & Regression (A Level only)
                            • 2.5.1 PMCC & Non-linear Regression
                              • 2.5.2 Hypothesis Testing for Correlation
                            • 3. Probability
                              • 3.1 Basic Probability
                                • 3.1.1 Calculating Probabilities & Events
                                  • 3.1.2 Venn Diagrams
                                    • 3.1.3 Tree Diagrams
                                    • 3.2 Further Probability (A Level only)
                                      • 3.2.1 Set Notation & Conditional Probability
                                        • 3.2.2 Further Venn Diagrams
                                          • 3.2.3 Further Tree Diagrams
                                            • 3.2.4 Probability Formulae
                                          • 4. Statistical Distributions
                                            • 4.1 Probability Distributions
                                              • 4.1.1 Discrete Probability Distributions
                                              • 4.2 Binomial Distribution
                                                • 4.2.1 The Binomial Distribution
                                                  • 4.2.2 Calculating Binomial Probabilities
                                                  • 4.3 Normal Distribution (A Level only)
                                                    • 4.3.1 The Normal Distribution
                                                      • 4.3.2 Normal Distribution - Calculations
                                                        • 4.3.3 Standard Normal Distribution
                                                        • 4.4 Choosing Distributions (A Level only)
                                                          • 4.4.1 Modelling with Distributions
                                                            • 4.4.2 Normal Approximation of Binomial
                                                          • 5. Hypothesis Testing
                                                            • 5.1 Hypothesis Testing
                                                              • 5.1.1 Hypothesis Testing
                                                              • 5.2 Hypothesis Testing (Binomial Distribution)
                                                                • 5.2.1 Binomial Hypothesis Testing
                                                                • 5.3 Hypothesis Testing (Normal Distribution) (A Level only)
                                                                  • 5.3.1 Sample Mean Distribution
                                                                    • 5.3.2 Normal Hypothesis Testing
                                                                  • 6. Large Data Set
                                                                    • 6.1 Large Data Set
                                                                      • 6.1 Large Data Set


                                                                      DOWNLOAD PDF

                                                                    Author: Daniel

                                                                    Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.


                                                                    Save My Exams Logo
                                                                    Resources
                                                                    Home Join Support

                                                                    Members
                                                                    Members Home Account Login

                                                                    Company
                                                                    About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                    Quick Links
                                                                    GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                     
                                                                    © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                                                    IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.