Cookies

We use cookies to improve your experience on our website By continuing to browse the site you are agreeing to our use of cookies.
Our privacy policy

Save My Exams Logo
  • GCSE
  • IGCSE
  • AS
  • A Level
  • O Level
  • Pre U
  • IB
  • Login
  •  
MathsBiologyChemistryPhysicsCombined ScienceEnglish LanguageOther Subjects
GCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers (old spec)
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE > Combined Science
Edexcel Combined: Biology Revision NotesPast Papers
Edexcel Combined: Chemistry Revision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE > English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE > Other Subjects
AQA English LiteratureBusiness StudiesComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusiness StudiesComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusiness StudiesComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
MathsBiologyChemistryPhysicsDouble ScienceEnglish LanguageGeographyOther Subjects
IGCSE > Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE > Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE Topic QuestionsRevision NotesPast Papers
IGCSE > Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE > English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE > Geography
CIE Past Papers
Edexcel Revision NotesPast Papers Topic QuestionsPast Papers
IGCSE > Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceEconomicsHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
MathsBiologyChemistryPhysicsEnglish LanguageOther Subjects
AS > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS > Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS > English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel Business StudiesEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
MathsBiologyChemistryPhysicsEnglish LanguageEconomicsPsychologyOther Subjects
A Level > Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2
A Level > Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level > English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Economics
Edexcel Past PapersPast Papers Topic QuestionsRevision Notes
AQA Past PapersPast Papers Topic Questions
OCR Past Papers
CIE Past Papers
A Level > Psychology
AQA Past Papers Topic QuestionsPast PapersRevision Notes
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level > Other Subjects
AQA Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographySociology
Edexcel Business StudiesEconomics AEnglish LiteratureFurther MathsGeographyHistory
OCR Business StudiesComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
BiologyChemistryPhysicsOther Subjects
O Level > Biology
CIE Topic QuestionsPast Papers
O Level > Chemistry
CIE Topic QuestionsPast Papers
O Level > Physics
CIE Topic QuestionsPast Papers
O Level > Other Subjects
CIE Additional MathsMaths D
MathsBiologyChemistryPhysics
Pre U > Maths
CIE Topic QuestionsPast Papers
Pre U > Biology
CIE Topic QuestionsPast Papers
Pre U > Chemistry
CIE Topic QuestionsPast Papers
Pre U > Physics
CIE Topic QuestionsPast Papers
MathsBiologyChemistryPhysics
IB > Maths
Maths: AA HL Topic QuestionsRevision Notes
Maths: AI HL Topic QuestionsRevision Notes
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB > Biology
Biology: SL Topic QuestionsRevision Notes
Biology: HL Topic QuestionsRevision Notes
IB > Chemistry
Chemistry: SL Topic QuestionsRevision Notes
Chemistry: HL Topic QuestionsRevision Notes
IB > Physics
Physics: SL Topic QuestionsRevision Notes
Physics: HL Topic QuestionsRevision Notes

CIE A Level Maths: Probability & Statistics 2

Revision Notes

Home / A Level / Maths: Probability & Statistics 2 / CIE / Revision Notes / 1. Statistical Sampling / 1.2 Sampling & Estimation / 1.2.1 Unbiased Estimates


1.2.1 Unbiased Estimates


Unbiased Estimates

What is an unbiased estimator of a population parameter?

  • An estimator is a statistic that is used to estimate a population parameter
    • When a sample is used with the estimator, the value that it produces is called an estimate
  • An estimator is called unbiased if the expected value of the estimator is equal to the population parameter
    • An estimate from an unbiased estimator is called an unbiased estimate
    • This means that the mean of the unbiased estimates will get closer to the population parameter as more samples are taken

What are the unbiased estimates for the mean and variance of a population?

  • If you had the data for a whole population you could find the actual population mean and variance using
    • begin mathsize 16px style mu equals fraction numerator straight capital sigma x over denominator n end fraction end style
    • begin mathsize 16px style sigma squared equals fraction numerator straight capital sigma left parenthesis x minus mu right parenthesis squared over denominator n end fraction equals fraction numerator straight capital sigma x squared over denominator n end fraction minus mu squared end style
  • If you are using a sample to estimate the mean of a population then an unbiased estimate is given by
    • begin mathsize 16px style x with bar on top space equals fraction numerator straight capital sigma x over denominator n end fraction end style 
    • This is the same formula for the population mean
  • If you are using a sample to estimate the variance of a population then an unbiased estimate is given by
    • begin mathsize 16px style s squared equals fraction numerator straight capital sigma left parenthesis x minus x with bar on top right parenthesis squared over denominator n minus 1 end fraction end style 
    • This can be written in different ways
    • begin mathsize 16px style s squared equals fraction numerator capital sigma open parentheses x minus x with bar on top close parentheses squared over denominator n minus 1 end fraction equals fraction numerator 1 over denominator n minus 1 end fraction open parentheses capital sigma x squared minus open parentheses capital sigma x close parentheses squared over n close parentheses equals fraction numerator n over denominator n minus 1 end fraction open parentheses fraction numerator capital sigma x squared over denominator n end fraction minus x with bar on top squared close parentheses end style
    • This is a different formula to the population variance
    • The last formula shows a method for finding an unbiased estimate for the variance
      • Find the variance of the sample (treating it as a population)
      • Multiply this by begin mathsize 16px style fraction numerator n over denominator n minus 1 end fraction end style

Is there an unbiased estimate for the standard deviation?

  • Unfortunately square rooting an unbiased variance does not result in an unbiased standard deviation
  • There is not a formula for an unbiased estimate for the standard deviation that works for all populations
    • Therefore it is better to just work with the variance and not the standard deviation
  • If you need an estimate for the standard deviation then you can use:
    • You can use the square root of your unbiased estimate for the population variance
      • begin mathsize 16px style s equals square root of fraction numerator straight capital sigma left parenthesis x minus x with bar on top right parenthesis squared over denominator n minus 1 end fraction end root equals square root of fraction numerator 1 over denominator n minus 1 end fraction open parentheses capital sigma x squared minus open parentheses capital sigma x close parentheses squared over n close parentheses end root end style
    • This won’t be unbiased but it will be a good estimate

How do I calculate unbiased estimates?

  • If you are given the summary statistics begin mathsize 16px style straight capital sigma x end style and  then you can simply use the formulae in the formula booklet
    • begin mathsize 16px style s squared equals fraction numerator 1 over denominator n minus 1 end fraction open parentheses straight capital sigma x squared minus open parentheses straight capital sigma x close parentheses squared over n close parentheses end style
  • If you are given the raw data then you will first need to calculate straight capital sigma x and straight capital sigma x squared

Worked Example

The times, T minutes, spent on daily revision of a random sample of 50 A Level students from the UK are summarised as follows.

          n equals 50      straight capital sigma t equals 6174        straight capital sigma t squared space equals space 831581 

Calculate unbiased estimates of the population mean and variance of the times spent on daily revision by A Level students in the UK

1-2-1-unbiased-estimates-we-solution

Exam Tip

  • Always check whether you need to divide by n or n-1 by looking carefully at the wording in the question.


  • 1. Statistical Sampling
    • 1.1 Sampling & Data Collection
      • 1.1.1 Sampling & Data Collection
      • 1.2 Sampling & Estimation
        • 1.2.1 Unbiased Estimates
          • 1.2.2 Distribution of Sample Means
            • 1.2.3 Confidence Intervals
          • 2. Statistical Distributions
            • 2.1 Poisson Distribution
              • 2.1.1 The Poisson Distribution
              • 2.2 Linear Combinations of Random Variables
                • 2.2.1 Linear Combinations of Random Variables
                • 2.3 Continuous Random Variables
                  • 2.3.1 Probability Density Function
                    • 2.3.2 E(X) & Var(X) (Continuous)
                      • 2.3.3 Continuous Uniform Distribution
                      • 2.4 Working with Distributions
                        • 2.4.1 Choosing Distributions
                          • 2.4.2 Approximations of Distributions
                        • 3. Hypothesis Testing
                          • 3.1 Hypothesis Testing
                            • 3.1.1 Hypothesis Testing
                              • 3.1.2 Type I & Type II Errors
                              • 3.2 Hypothesis Testing (Discrete Distribution)
                                • 3.2.1 Binomial Hypothesis Testing
                                  • 3.2.2 Poisson Hypothesis Testing
                                  • 3.3 Hypothesis Testing (Normal Distribution)
                                    • 3.3.1 Normal Hypothesis Testing


                                    DOWNLOAD PDF

                                  Author: Daniel

                                  Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.


                                  Save My Exams Logo
                                  Resources
                                  Home Join Support

                                  Members
                                  Members Home Account Login

                                  Company
                                  About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                  Quick Links
                                  GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                   
                                  © Copyright 2015-2022 Save My Exams Ltd. All Rights Reserved.
                                  IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.