Edexcel A Level Chemistry

Revision Notes

6.1.4 Conventional Cell Representation

Test Yourself

Conventional Cell Representation

Conventional Representation of Cells

  • As it is cumbersome and time-consuming to draw out every electrochemical cell in full, a system of notation is used which describes the cell in full, but does not require it to be drawn.
  • An electrochemical cell can be represented in a shorthand way by a cell diagram (sometimes called cell representations or cell notations)

Conventional cell representation, downloadable IB Chemistry revision notes

The conventional representation of voltaic cells

  • By convention, the half cell with the greatest negative potential is written on the left of the salt bridge, so Eθcell = Eθright Eθleft
    • In this case, Eθcell = +0.34 – -0.76 = +1.10 V.

  • The left cell is being oxidized while the right is being reduced
  • If there is more than one species in solution, and the species are on different sides of the half-equation, the different species are separated by a comma
  • This method of representing electrochemical cells is known as the conventional representation of a cell, and it is widely used
  • If both species in a half reaction are aqueous then an inert platinum electrode is needed which is recorded on the outside of the half cell diagram

Some Examples

  • For the iron(II) and iron(III) half cell reaction a platinum electrode is needed as an electron carrier
  • The half equation is

Fe3+(aq) + e- ⇌ Fe2+(aq)

  • So the cell convention as a left hand electrode would be

Pt 丨Fe2+(aq), Fe3+(aq)

  • Notice the order must be Fe(II) then Fe(III) as the left side is an oxidation reaction, so Fe(II) is oxidised to Fe(III) by the loss of an electron
  • The platinum electrode is separated by the phase boundary (vertical solid line), but the iron(II) and iron(III) are separated by a comma since they are in the same phase
  • Non-metals will also require a platinum electrode
  • If chlorine is used as an electrode the reduction reaction is

Cl2(g) + 2e- ⇌ 2Cl-(aq)

  • The conventional representation of the half reaction would be

Cl2 (g), 2Cl- (aq) | Pt 

  • Notice that the half cell reaction is balanced; however, it would be also correct to write it as

Cl2 (g), Cl- (aq) | Pt 

  • This is because conventional cell diagrams are not quantitative- they are just representations of the materials and redox processes going on
    • Most chemists tend to show them balanced anyway

  • Combining these two half cells together gives

Pt  | Fe2+(aq), Fe3+(aq)  ∥  Cl2 (g), 2Cl- (aq) | Pt

  • As you can see the overall cell diagram is not quantitative as the left side is a one electron transfer and the right side is a two electron transfer

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Richard

Author: Richard

Richard has taught Chemistry for over 15 years as well as working as a science tutor, examiner, content creator and author. He wasn’t the greatest at exams and only discovered how to revise in his final year at university. That knowledge made him want to help students learn how to revise, challenge them to think about what they actually know and hopefully succeed; so here he is, happily, at SME.